Add comments to everything
This commit is contained in:
parent
a88fc5d9c6
commit
a499d14e87
|
@ -8,46 +8,88 @@ import Data.NumIdr.Array.Coords
|
|||
%default total
|
||||
|
||||
|
||||
||| Arrays are the central data structure of NumIdr. They are an `n`-dimensional
|
||||
||| grid of values, where `n` is a value known as the *rank* of the array. Arrays
|
||||
||| of rank 0 are single values, arrays of rank 1 are vectors, and arrays of rank
|
||||
||| 2 are matrices.
|
||||
|||
|
||||
||| Each array has a *shape*, which is a vector of values giving the dimensions
|
||||
||| of each axis of the array. The shape is also sometimes used to determine the
|
||||
||| array's total size.
|
||||
|||
|
||||
||| Arrays are indexed by row first, as in the standard mathematical notation for
|
||||
||| matrices. This is independent of the actual order in which they are stored; the
|
||||
||| default order is row-major, but this is configurable.
|
||||
|||
|
||||
||| @ rk The rank of the array
|
||||
||| @ s The shape of the array
|
||||
||| @ a The type of the array's elements
|
||||
export
|
||||
data Array : Vect rk Nat -> Type -> Type where
|
||||
MkArray : (sts : Vect rk Nat) -> (s : Vect rk Nat) -> PrimArray a -> Array s a
|
||||
data Array : (s : Vect rk Nat) -> (a : Type) -> Type where
|
||||
||| Internally, arrays are stored using Idris's primitive array type. This is
|
||||
||| stored along with the array's shape, and a vector of values called the
|
||||
||| *strides*, which determine how indexes into the internal array should be
|
||||
||| performed. This is how the order of the array is configurable.
|
||||
|||
|
||||
||| @ s The shape of the array
|
||||
||| @ sts The strides of the array
|
||||
MkArray : (s : Vect rk Nat) -> (sts : Vect rk Nat) -> PrimArray a -> Array s a
|
||||
|
||||
|
||||
||| Extract the primitive array value.
|
||||
export
|
||||
getPrim : Array s a -> PrimArray a
|
||||
getPrim (MkArray _ _ arr) = arr
|
||||
getPrim (MkArray _ _ arr) = arr
|
||||
|
||||
||| The strides of the array, returned in the same axis order as in the shape.
|
||||
export
|
||||
getStrides : Array {rk} s a -> Vect rk Nat
|
||||
getStrides (MkArray sts _ _) = sts
|
||||
getStrides (MkArray _ sts _) = sts
|
||||
|
||||
||| The total number of elements of the array
|
||||
||| This is equivalent to `product s`.
|
||||
export
|
||||
size : Array s a -> Nat
|
||||
size = length . getPrim
|
||||
|
||||
||| The shape of the array
|
||||
export
|
||||
shape : Array {rk} s a -> Vect rk Nat
|
||||
shape (MkArray _ s _) = s
|
||||
shape (MkArray s _ _) = s
|
||||
|
||||
||| The rank of the array
|
||||
export
|
||||
rank : Array s a -> Nat
|
||||
rank = length . shape
|
||||
|
||||
|
||||
|
||||
||| Create an array given a vector of its elements. The elements of the vector
|
||||
||| are arranged into the provided shape using the provided order.
|
||||
|||
|
||||
||| @ s The shape of the constructed array
|
||||
||| @ ord The order to interpret the elements
|
||||
export
|
||||
fromVect' : (s : Vect rk Nat) -> Order rk -> Vect (product s) a -> Array s a
|
||||
fromVect' s ord v = MkArray (calcStrides ord s) s (fromList $ toList v)
|
||||
fromVect' : (s : Vect rk Nat) -> (ord : Order rk) -> Vect (product s) a -> Array s a
|
||||
fromVect' s ord v = MkArray s (calcStrides ord s) (fromList $ toList v)
|
||||
|
||||
||| Create an array given a vector of its elements. The elements of the vector
|
||||
||| are assembled into the provided shape using row-major order (the last axis is the
|
||||
||| least significant).
|
||||
|||
|
||||
||| @ s The shape of the constructed array
|
||||
export
|
||||
fromVect : (s : Vect rk Nat) -> Vect (product s) a -> Array s a
|
||||
fromVect s = fromVect' s (orderOfShape s COrder)
|
||||
|
||||
fromVect s = fromVect' s COrder
|
||||
|
||||
|
||||
||| Construct an array using a structure of nested vectors. The elements are arranged
|
||||
||| to the specified order before being written.
|
||||
|||
|
||||
||| @ s The shape of the constructed array
|
||||
||| @ ord The order of the constructed array
|
||||
export
|
||||
array' : (s : Vect rk Nat) -> Order rk -> Vects s a -> Array s a
|
||||
array' s ord v = MkArray sts s (unsafeFromIns (product s) ins)
|
||||
array' : (s : Vect rk Nat) -> (ord : Order rk) -> Vects s a -> Array s a
|
||||
array' s ord v = MkArray s sts (unsafeFromIns (product s) ins)
|
||||
where
|
||||
sts : Vect rk Nat
|
||||
sts = calcStrides ord s
|
||||
|
@ -55,29 +97,35 @@ array' s ord v = MkArray sts s (unsafeFromIns (product s) ins)
|
|||
ins : List (Nat, a)
|
||||
ins = collapse $ mapWithIndex (\i,x => (sum $ zipWith (*) i sts, x)) v
|
||||
|
||||
|
||||
||| Construct an array using a structure of nested vectors.
|
||||
export
|
||||
reshape' : (s' : Vect rk' Nat) -> Order rk' -> Array {rk} s a ->
|
||||
product s = product s' => Array s' a
|
||||
reshape' s' ord' arr = MkArray (calcStrides ord' s') s' (getPrim arr)
|
||||
array : {s : _} -> Vects s a -> Array s a
|
||||
array v = MkArray s (calcStrides COrder s) (fromList $ collapse v)
|
||||
|
||||
|
||||
||| Reshape the array into the given shape and reinterpret it according to
|
||||
||| the given order.
|
||||
|||
|
||||
||| @ s' The shape to convert the array to
|
||||
||| @ ord The order to reinterpret the array by
|
||||
export
|
||||
reshape' : (s' : Vect rk' Nat) -> (ord : Order rk') -> Array {rk} s a ->
|
||||
product s = product s' => Array s' a
|
||||
reshape' s' ord' arr = MkArray s' (calcStrides ord' s') (getPrim arr)
|
||||
|
||||
||| Reshape the array into the given shape.
|
||||
|||
|
||||
||| The array is also reinterpreted in row-major order; if this is undesirable,
|
||||
||| then `reshape'` must be used instead.
|
||||
|||
|
||||
||| @ s' The shape to convert the array to
|
||||
export
|
||||
reshape : (s' : Vect rk' Nat) -> Array {rk} s a ->
|
||||
product s = product s' => Array s' a
|
||||
reshape s' = reshape' s' (orderOfShape s' COrder)
|
||||
reshape s' = reshape' s' COrder
|
||||
|
||||
|
||||
||| Index the array using the given `Coords` object.
|
||||
export
|
||||
index : Coords s -> Array s a -> a
|
||||
index is arr = index (computeLoc (getStrides arr) is) (getPrim arr)
|
||||
|
||||
|
||||
export
|
||||
test : Array [2,2,3] Int
|
||||
test = array' _ FOrder [[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]
|
||||
|
||||
export
|
||||
main : IO ()
|
||||
main = do
|
||||
printLn $ index [0,1,0] test
|
||||
printLn $ index [1,1,2] test
|
||||
index is arr = index (getLocation (getStrides arr) is) (getPrim arr)
|
||||
|
|
|
@ -5,18 +5,20 @@ import Data.Vect
|
|||
%default total
|
||||
|
||||
|
||||
||| A type-safe coordinate system for an array. The coordinates are
|
||||
||| values of `Fin dim`, where `dim` is the dimension of each axis.
|
||||
public export
|
||||
data Coords : (s : Vect rk Nat) -> Type where
|
||||
Nil : Coords Nil
|
||||
(::) : Fin dim -> Coords s -> Coords (dim :: s)
|
||||
|
||||
||| Forget the shape of the array by converting each index to type `Nat`.
|
||||
export
|
||||
toNats : Coords {rk} s -> Vect rk Nat
|
||||
toNats [] = []
|
||||
toNats (i :: is) = finToNat i :: toNats is
|
||||
|
||||
|
||||
|
||||
public export
|
||||
Vects : Vect rk Nat -> Type -> Type
|
||||
Vects [] a = a
|
||||
|
@ -44,6 +46,8 @@ index [] x = x
|
|||
index (i::is) v = index is $ index i v
|
||||
|
||||
|
||||
||| Compute the memory location of an array element
|
||||
||| given its coordinate and the strides of the array.
|
||||
export
|
||||
computeLoc : Vect rk Nat -> Coords {rk} s -> Nat
|
||||
computeLoc sts is = sum $ zipWith (*) sts (toNats is)
|
||||
getLocation : Vect rk Nat -> Coords {rk} s -> Nat
|
||||
getLocation sts is = sum $ zipWith (*) sts (toNats is)
|
||||
|
|
|
@ -6,9 +6,21 @@ import Data.Permutation
|
|||
%default total
|
||||
|
||||
|
||||
||| An order is an abstract representation of the way in which array
|
||||
||| elements are stored in memory. Orders are used to calculate strides,
|
||||
||| which provide a method of converting an array coordinate into a linear
|
||||
||| memory location.
|
||||
|||
|
||||
||| @ rk The rank of the array this order applies to
|
||||
public export
|
||||
data Order : (rk : Nat) -> Type where
|
||||
|
||||
||| C-like order, or contiguous order. This order stores elements in a
|
||||
||| row-major fashion (the last axis is the least significant).
|
||||
COrder : Order rk
|
||||
|
||||
||| Fortran-like order. This order stores elements in a column-major
|
||||
||| fashion (the first axis is the least significant).
|
||||
FOrder : Order rk
|
||||
|
||||
|
||||
|
@ -24,7 +36,9 @@ scanr f q0 (x::xs) = f x (head qs) :: qs
|
|||
where qs : Vect len res
|
||||
qs = scanr f q0 xs
|
||||
|
||||
||| Calculate an array's strides given its order and shape.
|
||||
export
|
||||
calcStrides : Order rk -> Vect rk Nat -> Vect rk Nat
|
||||
calcStrides COrder v = tail $ scanr (*) 1 v
|
||||
calcStrides FOrder v = init $ scanl (*) 1 v
|
||||
calcStrides _ [] = []
|
||||
calcStrides COrder v@(_::_) = scanr (*) 1 $ tail v
|
||||
calcStrides FOrder v@(_::_) = scanl (*) 1 $ init v
|
||||
|
|
|
@ -4,6 +4,8 @@ import Data.IOArray.Prims
|
|||
|
||||
%default total
|
||||
|
||||
|
||||
||| A wrapper for Idris's primitive array type.
|
||||
export
|
||||
record PrimArray a where
|
||||
constructor MkPrimArray
|
||||
|
@ -26,6 +28,8 @@ arrayDataSet : Nat -> a -> ArrayData a -> IO ()
|
|||
arrayDataSet n x arr = fromPrim $ prim__arraySet arr (cast n) x
|
||||
|
||||
|
||||
||| Construct an array from a list of "instructions" to write a
|
||||
||| value to a particular index.
|
||||
export
|
||||
unsafeFromIns : Nat -> List (Nat, a) -> PrimArray a
|
||||
unsafeFromIns size ins = unsafePerformIO $ do
|
||||
|
@ -33,6 +37,8 @@ unsafeFromIns size ins = unsafePerformIO $ do
|
|||
for_ ins $ \(i,x) => arrayDataSet i x arr
|
||||
pure $ MkPrimArray size arr
|
||||
|
||||
||| Create an array given its size and a function to generate
|
||||
||| its elements by its index.
|
||||
export
|
||||
create : Nat -> (Nat -> a) -> PrimArray a
|
||||
create size f = unsafePerformIO $ do
|
||||
|
@ -47,10 +53,13 @@ create size f = unsafePerformIO $ do
|
|||
addToArray (S loc) n arr
|
||||
|
||||
|
||||
||| Index into a primitive array. This function is unsafe, as it
|
||||
||| performs no boundary check on the index given.
|
||||
export
|
||||
index : Nat -> PrimArray a -> a
|
||||
index n arr = unsafePerformIO $ arrayDataGet n $ content arr
|
||||
|
||||
||| A safe version of `index` that ensures the index entered is valid.
|
||||
export
|
||||
safeIndex : Nat -> PrimArray a -> Maybe a
|
||||
safeIndex n arr = if n < length arr
|
||||
|
@ -58,6 +67,7 @@ safeIndex n arr = if n < length arr
|
|||
else Nothing
|
||||
|
||||
|
||||
||| Convert a primitive array to a list.
|
||||
export
|
||||
toList : PrimArray a -> List a
|
||||
toList arr = iter (length arr) []
|
||||
|
@ -67,6 +77,7 @@ toList arr = iter (length arr) []
|
|||
iter (S n) acc = let el = index n arr
|
||||
in iter n (el :: acc)
|
||||
|
||||
||| Construct a primitive array from a list.
|
||||
export
|
||||
fromList : List a -> PrimArray a
|
||||
fromList xs = create (length xs)
|
||||
|
@ -76,6 +87,7 @@ fromList xs = create (length xs)
|
|||
fromJust : Maybe a -> a
|
||||
fromJust (Just x) = x
|
||||
|
||||
||| Map a function over a primitive array.
|
||||
export
|
||||
map : (a -> b) -> PrimArray a -> PrimArray b
|
||||
map f arr = create (length arr) (\n => f $ index n arr)
|
||||
|
|
|
@ -5,22 +5,28 @@ import Data.Vect
|
|||
%default total
|
||||
|
||||
|
||||
||| A permutation of `n` elements represented as a vector of indices.
|
||||
||| For example, `[1,2,0]` is a permutation that maps element `0` to
|
||||
||| element `1`, element `1` to element `2`, and element `2` to element `0`.
|
||||
public export
|
||||
Permutation : Nat -> Type
|
||||
Permutation : (n : Nat) -> Type
|
||||
Permutation n = Vect n (Fin n)
|
||||
|
||||
|
||||
||| The identity permutation.
|
||||
public export
|
||||
identity : {n : _} -> Permutation n
|
||||
identity {n=Z} = []
|
||||
identity {n=S n} = FZ :: map FS identity
|
||||
|
||||
||| The permutation that reverses the order of elements.
|
||||
public export
|
||||
reversed : {n : _} -> Permutation n
|
||||
reversed {n=Z} = []
|
||||
reversed {n=S n} = last :: map weaken reversed
|
||||
|
||||
|
||||
||| Apply a permutation to a vector.
|
||||
public export
|
||||
permuteVect : Permutation n -> Vect n a -> Vect n a
|
||||
permuteVect p v = map (\i => index i v) p
|
||||
|
|
Loading…
Reference in a new issue