Remove rank-index on Order type
This commit is contained in:
parent
a499d14e87
commit
76e16574f1
|
@ -31,20 +31,27 @@ data Array : (s : Vect rk Nat) -> (a : Type) -> Type where
|
|||
||| *strides*, which determine how indexes into the internal array should be
|
||||
||| performed. This is how the order of the array is configurable.
|
||||
|||
|
||||
||| @ s The shape of the array
|
||||
||| @ ord The order of the elements of the array
|
||||
||| @ sts The strides of the array
|
||||
MkArray : (s : Vect rk Nat) -> (sts : Vect rk Nat) -> PrimArray a -> Array s a
|
||||
||| @ s The shape of the array
|
||||
MkArray : (ord : Order) -> (sts : Vect rk Nat) ->
|
||||
(s : Vect rk Nat) -> PrimArray a -> Array s a
|
||||
|
||||
|
||||
||| Extract the primitive array value.
|
||||
export
|
||||
getPrim : Array s a -> PrimArray a
|
||||
getPrim (MkArray _ _ arr) = arr
|
||||
getPrim (MkArray _ _ _ arr) = arr
|
||||
|
||||
||| The order of the elements of the array
|
||||
export
|
||||
getOrder : Array s a -> Order
|
||||
getOrder (MkArray ord _ _ _) = ord
|
||||
|
||||
||| The strides of the array, returned in the same axis order as in the shape.
|
||||
export
|
||||
getStrides : Array {rk} s a -> Vect rk Nat
|
||||
getStrides (MkArray _ sts _) = sts
|
||||
getStrides (MkArray _ sts _ _) = sts
|
||||
|
||||
||| The total number of elements of the array
|
||||
||| This is equivalent to `product s`.
|
||||
|
@ -55,7 +62,7 @@ size = length . getPrim
|
|||
||| The shape of the array
|
||||
export
|
||||
shape : Array {rk} s a -> Vect rk Nat
|
||||
shape (MkArray s _ _) = s
|
||||
shape (MkArray _ _ s _) = s
|
||||
|
||||
||| The rank of the array
|
||||
export
|
||||
|
@ -69,8 +76,8 @@ rank = length . shape
|
|||
||| @ s The shape of the constructed array
|
||||
||| @ ord The order to interpret the elements
|
||||
export
|
||||
fromVect' : (s : Vect rk Nat) -> (ord : Order rk) -> Vect (product s) a -> Array s a
|
||||
fromVect' s ord v = MkArray s (calcStrides ord s) (fromList $ toList v)
|
||||
fromVect' : (s : Vect rk Nat) -> (ord : Order) -> Vect (product s) a -> Array s a
|
||||
fromVect' s ord v = MkArray ord (calcStrides ord s) s (fromList $ toList v)
|
||||
|
||||
||| Create an array given a vector of its elements. The elements of the vector
|
||||
||| are assembled into the provided shape using row-major order (the last axis is the
|
||||
|
@ -88,19 +95,19 @@ fromVect s = fromVect' s COrder
|
|||
||| @ s The shape of the constructed array
|
||||
||| @ ord The order of the constructed array
|
||||
export
|
||||
array' : (s : Vect rk Nat) -> (ord : Order rk) -> Vects s a -> Array s a
|
||||
array' s ord v = MkArray s sts (unsafeFromIns (product s) ins)
|
||||
array' : (s : Vect rk Nat) -> (ord : Order) -> Vects s a -> Array s a
|
||||
array' s ord v = MkArray ord sts s (unsafeFromIns (product s) ins)
|
||||
where
|
||||
sts : Vect rk Nat
|
||||
sts = calcStrides ord s
|
||||
|
||||
ins : List (Nat, a)
|
||||
ins = collapse $ mapWithIndex (\i,x => (sum $ zipWith (*) i sts, x)) v
|
||||
ins = collapse $ mapWithIndex (\is,x => (getLocation' sts is, x)) v
|
||||
|
||||
||| Construct an array using a structure of nested vectors.
|
||||
export
|
||||
array : {s : _} -> Vects s a -> Array s a
|
||||
array v = MkArray s (calcStrides COrder s) (fromList $ collapse v)
|
||||
array v = MkArray COrder (calcStrides COrder s) s (fromList $ collapse v)
|
||||
|
||||
|
||||
||| Reshape the array into the given shape and reinterpret it according to
|
||||
|
@ -109,20 +116,17 @@ array v = MkArray s (calcStrides COrder s) (fromList $ collapse v)
|
|||
||| @ s' The shape to convert the array to
|
||||
||| @ ord The order to reinterpret the array by
|
||||
export
|
||||
reshape' : (s' : Vect rk' Nat) -> (ord : Order rk') -> Array {rk} s a ->
|
||||
reshape' : (s' : Vect rk' Nat) -> (ord : Order) -> Array {rk} s a ->
|
||||
product s = product s' => Array s' a
|
||||
reshape' s' ord' arr = MkArray s' (calcStrides ord' s') (getPrim arr)
|
||||
reshape' s' ord' arr = MkArray ord' (calcStrides ord' s') s' (getPrim arr)
|
||||
|
||||
||| Reshape the array into the given shape.
|
||||
|||
|
||||
||| The array is also reinterpreted in row-major order; if this is undesirable,
|
||||
||| then `reshape'` must be used instead.
|
||||
|||
|
||||
||| @ s' The shape to convert the array to
|
||||
export
|
||||
reshape : (s' : Vect rk' Nat) -> Array {rk} s a ->
|
||||
product s = product s' => Array s' a
|
||||
reshape s' = reshape' s' COrder
|
||||
reshape s' arr = reshape' s' (getOrder arr) arr
|
||||
|
||||
|
||||
||| Index the array using the given `Coords` object.
|
||||
|
|
|
@ -46,8 +46,12 @@ index [] x = x
|
|||
index (i::is) v = index is $ index i v
|
||||
|
||||
|
||||
export
|
||||
getLocation' : (sts : Vect rk Nat) -> (is : Vect rk Nat) -> Nat
|
||||
getLocation' = sum .: zipWith (*)
|
||||
|
||||
||| Compute the memory location of an array element
|
||||
||| given its coordinate and the strides of the array.
|
||||
export
|
||||
getLocation : Vect rk Nat -> Coords {rk} s -> Nat
|
||||
getLocation sts is = sum $ zipWith (*) sts (toNats is)
|
||||
getLocation sts is = getLocation' sts (toNats is)
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
module Data.NumIdr.Array.Order
|
||||
|
||||
import Data.Vect
|
||||
import Data.Permutation
|
||||
|
||||
%default total
|
||||
|
||||
|
@ -10,24 +9,16 @@ import Data.Permutation
|
|||
||| elements are stored in memory. Orders are used to calculate strides,
|
||||
||| which provide a method of converting an array coordinate into a linear
|
||||
||| memory location.
|
||||
|||
|
||||
||| @ rk The rank of the array this order applies to
|
||||
public export
|
||||
data Order : (rk : Nat) -> Type where
|
||||
data Order : Type where
|
||||
|
||||
||| C-like order, or contiguous order. This order stores elements in a
|
||||
||| row-major fashion (the last axis is the least significant).
|
||||
COrder : Order rk
|
||||
COrder : Order
|
||||
|
||||
||| Fortran-like order. This order stores elements in a column-major
|
||||
||| fashion (the first axis is the least significant).
|
||||
FOrder : Order rk
|
||||
|
||||
|
||||
export
|
||||
orderOfShape : (0 s : Vect rk Nat) -> Order (length s) -> Order rk
|
||||
orderOfShape s ord = rewrite sym (lengthCorrect s) in ord
|
||||
|
||||
FOrder : Order
|
||||
|
||||
|
||||
scanr : (el -> res -> res) -> res -> Vect len el -> Vect (S len) res
|
||||
|
@ -38,7 +29,7 @@ scanr f q0 (x::xs) = f x (head qs) :: qs
|
|||
|
||||
||| Calculate an array's strides given its order and shape.
|
||||
export
|
||||
calcStrides : Order rk -> Vect rk Nat -> Vect rk Nat
|
||||
calcStrides : Order -> Vect rk Nat -> Vect rk Nat
|
||||
calcStrides _ [] = []
|
||||
calcStrides COrder v@(_::_) = scanr (*) 1 $ tail v
|
||||
calcStrides FOrder v@(_::_) = scanl (*) 1 $ init v
|
||||
|
|
|
@ -1,32 +0,0 @@
|
|||
module Data.Permutation
|
||||
|
||||
import Data.Vect
|
||||
|
||||
%default total
|
||||
|
||||
|
||||
||| A permutation of `n` elements represented as a vector of indices.
|
||||
||| For example, `[1,2,0]` is a permutation that maps element `0` to
|
||||
||| element `1`, element `1` to element `2`, and element `2` to element `0`.
|
||||
public export
|
||||
Permutation : (n : Nat) -> Type
|
||||
Permutation n = Vect n (Fin n)
|
||||
|
||||
|
||||
||| The identity permutation.
|
||||
public export
|
||||
identity : {n : _} -> Permutation n
|
||||
identity {n=Z} = []
|
||||
identity {n=S n} = FZ :: map FS identity
|
||||
|
||||
||| The permutation that reverses the order of elements.
|
||||
public export
|
||||
reversed : {n : _} -> Permutation n
|
||||
reversed {n=Z} = []
|
||||
reversed {n=S n} = last :: map weaken reversed
|
||||
|
||||
|
||||
||| Apply a permutation to a vector.
|
||||
public export
|
||||
permuteVect : Permutation n -> Vect n a -> Vect n a
|
||||
permuteVect p v = map (\i => index i v) p
|
Loading…
Reference in a new issue