Document everything

This commit is contained in:
Kiana Sheibani 2023-03-07 22:15:08 -05:00
parent a717b58293
commit 5a35b099c1
Signed by: toki
GPG key ID: 6CB106C25E86A9F7
12 changed files with 425 additions and 53 deletions

View file

@ -11,6 +11,7 @@ import Data.Profunctor.Sieve
-- NOTE: This may be better as a type synonym instead of a new type?
||| A profunctor lifted into a functor.
public export
record Cayley {0 k1,k2,k3 : Type} f (p : k1 -> k2 -> k3) a b where
constructor MkCayley

View file

@ -8,15 +8,34 @@ import Data.Profunctor.Strong
%default total
------------------------------------------------------------------------------
-- Closed interface
------------------------------------------------------------------------------
||| Closed profunctors preserve the closed structure of a category.
|||
||| Laws:
||| * `lmap (. f) . closed = rmap (. f) . closed`
||| * `closed . closed = dimap uncurry curry . closed`
||| * `dimap const ($ ()) . closed = id`
public export
interface Profunctor p => Closed p where
||| The action of a closed profunctor.
closed : p a b -> p (x -> a) (x -> b)
------------------------------------------------------------------------------
-- Implementations for existing types
------------------------------------------------------------------------------
export
Closed Morphism where
closed (Mor f) = Mor (f .)
||| A named implementation of `Closed` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Closed (\a,b => a -> b) using Profunctor.Function where
closed = (.)
@ -30,6 +49,12 @@ export
curry' : Closed p => p (a, b) c -> p a (b -> c)
curry' = lmap (,) . closed
------------------------------------------------------------------------------
-- Closure
------------------------------------------------------------------------------
-- Helper functions for working with function types
hither : (s -> (a, b)) -> (s -> a, s -> b)
hither h = (fst . h, snd . h)
@ -38,8 +63,8 @@ yon : (s -> a, s -> b) -> s -> (a,b)
yon h s = (fst h s, snd h s)
-- Closure
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Closed`.
public export
record Closure p a b where
constructor MkClosure
@ -84,8 +109,13 @@ unclose : Profunctor q => p :-> Closure q -> p :-> q
unclose f p = dimap const ($ ()) $ runClosure $ f p
------------------------------------------------------------------------------
-- Environment
------------------------------------------------------------------------------
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Closed`.
public export
data Environment : (p : Type -> Type -> Type) -> Type -> Type -> Type where
MkEnv : ((z -> y) -> b) -> p x y -> (a -> z -> x) -> Environment p a b

View file

@ -1,3 +1,14 @@
||| This module defines profunctor costrength with respect to a particular
||| monoidal structure.
|||
||| Since the homset profunctor (`Morphism`) is not costrong, very few
||| profunctors implement this interface.
|||
||| Unlike Haskell's profunctors library, `Costrong` and `Cochoice` are here
||| special cases of the interface `GenCostrong`, which defines costrength with
||| respect to an arbitrary tensor product. When writing implementations for
||| a profunctor, `GenCostrong Pair` and `GenCostrong Either` should be used instead
||| of `Costrong` and `Cochoice` respectively.
module Data.Profunctor.Costrong
import Data.Morphisms
@ -7,37 +18,71 @@ import Data.Profunctor.Types
%default total
------------------------------------------------------------------------------
-- Costrength interface
------------------------------------------------------------------------------
||| Profunctor costrength with respect to a tensor product.
|||
||| These constraints are not required by the interface, but the tensor product
||| `ten` is generally expected to implement `(Tensor ten i, Symmetric ten)`.
|||
||| Laws:
||| * `costrongl = costrongr . dimap swap swap`
||| * `costrongl . dimap unitr.rightToLeft unitr.leftToRight = id`
||| * `costrongl . lmap (mapSnd f) = costrongl . rmap (mapSnd f)`
||| * `costrongr . costrongr = costrongr . dimap assoc.leftToRight assoc.rightToLeft`
|||
||| @ ten The tensor product of the monoidal structure
public export
interface Profunctor p => GenCostrong (0 ten : Type -> Type -> Type) p where
||| The left action of a costrong profunctor.
costrongl : p (a `ten` c) (b `ten` c) -> p a b
||| The right action of a costrong profunctor.
costrongr : p (c `ten` a) (c `ten` b) -> p a b
||| Profunctor costrength with respect to the product (`Pair`).
public export
Costrong : (p : Type -> Type -> Type) -> Type
Costrong = GenCostrong Pair
||| A special case of `costrongl` with constraint `Costrong`.
||| This is useful if the typechecker has trouble inferring the tensor product.
public export
unfirst : Costrong p => p (a, c) (b, c) -> p a b
unfirst = costrongl {ten=Pair}
||| A special case of `costrongr` with constraint `Costrong`.
||| This is useful if the typechecker has trouble inferring the tensor product.
public export
unsecond : Costrong p => p (c, a) (c, b) -> p a b
unsecond = costrongr {ten=Pair}
||| Profunctor costrength with respect to the coproduct (`Either`).
public export
Cochoice : (p : Type -> Type -> Type) -> Type
Cochoice = GenCostrong Either
||| A special case of `costrongl` with constraint `Cochoice`.
||| This is useful if the typechecker has trouble inferring the tensor product.
public export
unleft : Cochoice p => p (Either a c) (Either b c) -> p a b
unleft = costrongl {ten=Either}
||| A special case of `costrongr` with constraint `Cochoice`.
||| This is useful if the typechecker has trouble inferring the tensor product.
public export
unright : Cochoice p => p (Either c a) (Either c b) -> p a b
unright = costrongr {ten=Either}
-- Implementations
------------------------------------------------------------------------------
-- Implementations for existing types
------------------------------------------------------------------------------
export
GenCostrong Pair Tagged where
@ -45,8 +90,13 @@ GenCostrong Pair Tagged where
costrongr (Tag (_,x)) = Tag x
-- Tambara
------------------------------------------------------------------------------
-- Cotambara
------------------------------------------------------------------------------
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `GenCostrong ten`.
public export
data GenCotambara : (ten, p : Type -> Type -> Type) -> Type -> Type -> Type where
MkCotambara : GenCostrong ten q => q :-> p -> q a b -> GenCotambara ten p a b
@ -76,43 +126,39 @@ Functor (GenCotambara ten p a) where
map = rmap
export
gencotambara : GenCostrong ten p => p :-> q -> p :-> GenCotambara ten q
gencotambara f = MkCotambara f
export
ungencotambara : Tensor ten i => Profunctor q => p :-> GenCotambara ten q -> p :-> q
ungencotambara f p = proextract (f p)
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Costrong`.
|||
||| This is a special case of `GenCotambara`.
public export
Cotambara : (p : Type -> Type -> Type) -> Type -> Type -> Type
Cotambara = GenCotambara Pair
export
cotambara : Costrong p => p :-> q -> p :-> Cotambara q
cotambara = gencotambara
export
uncotambara : Profunctor q => p :-> Cotambara q -> p :-> q
uncotambara = ungencotambara
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Cochoice`.
|||
||| This is a special case of `GenCotambara`.
public export
CotambaraSum : (p : Type -> Type -> Type) -> Type -> Type -> Type
CotambaraSum = GenCotambara Either
export
cotambaraSum : Cochoice p => p :-> q -> p :-> CotambaraSum q
cotambaraSum = gencotambara
export
uncotambaraSum : Profunctor q => p :-> CotambaraSum q -> p :-> q
uncotambaraSum = ungencotambara
cotambara : GenCostrong ten p => p :-> q -> p :-> GenCotambara ten q
cotambara f = MkCotambara f
export
uncotambara : Tensor ten i => Profunctor q => p :-> GenCotambara ten q -> p :-> q
uncotambara f p = proextract (f p)
------------------------------------------------------------------------------
-- Copastro
------------------------------------------------------------------------------
||| The monad generated by the reflective subcategory of profunctors that
||| implement `GenCostrong ten`.
public export
record GenCopastro (ten, p : Type -> Type -> Type) a b where
constructor MkCopastro
@ -144,10 +190,18 @@ ProfunctorAdjunction (GenCopastro ten) (GenCotambara ten) where
procounit (MkCopastro h) = proextract (h id)
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Costrong`.
|||
||| This is a special case of `GenCopastro`.
public export
Copastro : (p : Type -> Type -> Type) -> Type -> Type -> Type
Copastro = GenCopastro Pair
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Cochoice`.
|||
||| This is a special case of `GenCopastro`.
public export
CopastroSum : (p : Type -> Type -> Type) -> Type -> Type -> Type
CopastroSum = GenCopastro Either

View file

@ -1,3 +1,6 @@
||| This module defines endofunctors in the category of profunctors `[Idrᵒᵖ * Idr, Idr]`,
||| along with adjunctions of those functors.
||| Examples of these functors include `Yoneda`, `Pastro`, `Closure`, etc.
module Data.Profunctor.Functor
import Data.Profunctor.Types
@ -5,24 +8,48 @@ import Data.Profunctor.Types
%default total
||| An endofunctor in the category of profunctors.
|||
||| Laws:
||| * `promap id = id`
||| * `promap g . promap f = promap (g . f)`
public export
interface ProfunctorFunctor (0 t : (Type -> Type -> Type) -> k -> k' -> Type) where
||| Lift a transformation between profunctors into the functor `t`.
promap : Profunctor p => p :-> q -> t p :-> t q
||| A monad in the category of profunctors.
|||
||| Laws:
||| * `projoin . proreturn ≡ id`
||| * `projoin . promap proreturn ≡ id`
||| * `projoin . projoin ≡ projoin . promap projoin`
public export
interface ProfunctorFunctor t =>
ProfunctorMonad (0 t : (Type -> Type -> Type) -> Type -> Type -> Type) where
propure : Profunctor p => p :-> t p
projoin : Profunctor p => t (t p) :-> t p
||| A comonad in the category of profunctors.
|||
||| Laws:
||| * `proextract . produplicate ≡ id`
||| * `promap proextract . produplicate ≡ id`
||| * `produplicate . produplicate ≡ promap produplicate . produplicate`
public export
interface ProfunctorFunctor t =>
ProfunctorComonad (0 t : (Type -> Type -> Type) -> Type -> Type -> Type) where
proextract : Profunctor p => t p :-> p
produplicate : Profunctor p => t p :-> t (t p)
||| An adjunction between endofunctors in the category of profunctors.
|||
||| Laws:
||| * `counit . promap unit ≡ id`
||| * `promap counit . unit ≡ id`
public export
interface (ProfunctorFunctor f, ProfunctorFunctor u) =>
ProfunctorAdjunction (0 f, u : (Type -> Type -> Type) -> Type -> Type -> Type) | f, u where
prounit : Profunctor p => p :-> u (f p)
procounit : Profunctor p => f (u p) :-> p
interface (ProfunctorFunctor l, ProfunctorFunctor r) =>
ProfunctorAdjunction (0 l, r : (Type -> Type -> Type) -> Type -> Type -> Type) | l, r where
prounit : Profunctor p => p :-> r (l p)
procounit : Profunctor p => l (r p) :-> p

View file

@ -9,6 +9,18 @@ import Data.Profunctor.Traversing
%default total
------------------------------------------------------------------------------
-- Mapping interface
------------------------------------------------------------------------------
||| The interface of profunctors that implement `roam`.
|||
||| Laws:
||| * `map' . lmap f = lmap (map f) . map'`
||| * `map' . rmap f = rmap (map f) . map'`
||| * `map' . map' = map' @{Compose}`
||| * `dimap Identity runIdentity . map' = id`
public export
interface (Traversing p, Closed p) => Mapping p where
map' : Functor f => p a b -> p (f a) (f b)
@ -21,11 +33,18 @@ interface (Traversing p, Closed p) => Mapping p where
functor = MkFunctor (\f => (. (. f)))
------------------------------------------------------------------------------
-- Implementations for existing types
------------------------------------------------------------------------------
export
Mapping Morphism where
map' (Mor f) = Mor (map f)
roam f (Mor x) = Mor (f x)
||| A named implementation of `Mapping` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Mapping (\a,b => a -> b)
using Traversing.Function Closed.Function where
@ -33,6 +52,13 @@ export
roam = id
------------------------------------------------------------------------------
-- Implementations for existing types
------------------------------------------------------------------------------
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Mapping`.
public export
record CofreeMapping p a b where
constructor MkCFM
@ -83,8 +109,12 @@ Profunctor p => Mapping (CofreeMapping p) where
map' (MkCFM p) = MkCFM (p @{Compose})
roam = roamCofree
------------------------------------------------------------------------------
-- FreeMapping
------------------------------------------------------------------------------
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Mapping`.
public export
data FreeMapping : (p : Type -> Type -> Type) -> Type -> Type -> Type where
MkFM : Functor f => (f y -> b) -> p x y -> (a -> f x) -> FreeMapping p a b

View file

@ -9,15 +9,45 @@ import Data.Profunctor.Sieve
%default total
------------------------------------------------------------------------------
-- Interfaces
------------------------------------------------------------------------------
||| A profunctor `p` is representable if it is isomorphic to `Star f` for some `f`.
public export
interface (Sieve p f, Strong p) => Representable p f | p where
tabulate : (a -> f b) -> p a b
||| A profunctor `p` is representable if it is isomorphic to `Costar f` for some `f`.
public export
interface Cosieve p f => Corepresentable p f | p where
cotabulate : (f a -> b) -> p a b
export
tabulated : (Representable q f, Representable r g) => forall p. Profunctor p =>
p (q a b) (r a' b') -> p (a -> f b) (a' -> g b')
tabulated = dimap tabulate sieve
export
cotabulated : (Corepresentable q f, Corepresentable r g) => forall p. Profunctor p =>
p (q a b) (r a' b') -> p (f a -> b) (g a' -> b')
cotabulated = dimap cotabulate cosieve
------------------------------------------------------------------------------
-- Implementations
------------------------------------------------------------------------------
export
Representable Morphism Identity where
tabulate f = Mor (runIdentity . f)
||| A named implementation of `Representable` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Representable (\a,b => a -> b) Identity
using Sieve.Function Strong.Function where
@ -33,17 +63,7 @@ Functor f => Representable (Star f) f where
export
tabulated : (Representable q f, Representable r g) => forall p. Profunctor p =>
p (q a b) (r a' b') -> p (a -> f b) (a' -> g b')
tabulated = dimap tabulate sieve
Functor f => Corepresentable (Costar f) f where
cotabulate = MkCostar
public export
interface (Cosieve p f, Costrong p) => Corepresentable p f | p where
cotabulate : (f a -> b) -> p a b
export
cotabulated : (Corepresentable q f, Corepresentable r g) => forall p. Profunctor p =>
p (q a b) (r a' b') -> p (f a -> b) (g a' -> b')
cotabulated = dimap cotabulate cosieve

View file

@ -7,15 +7,34 @@ import Data.Profunctor
%default total
------------------------------------------------------------------------------
-- Interfaces
------------------------------------------------------------------------------
||| A profunctor `p` is a sieve on `f` if it is a subprofunctor of `Star f`.
public export
interface (Profunctor p, Functor f) => Sieve p f | p where
sieve : p a b -> a -> f b
||| A profunctor `p` is a cosieve on `f` if it is a subprofunctor of `Costar f`.
public export
interface (Profunctor p, Functor f) => Cosieve p f | p where
cosieve : p a b -> f a -> b
------------------------------------------------------------------------------
-- Implementations
------------------------------------------------------------------------------
export
Sieve Morphism Identity where
sieve (Mor f) = Id . f
||| A named implementation of `Sieve` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Sieve (\a,b => a -> b) Identity using Profunctor.Function where
sieve = (Id .)
@ -29,15 +48,14 @@ Functor f => Sieve (Star f) f where
sieve = applyStar
public export
interface (Profunctor p, Functor f) => Cosieve p f | p where
cosieve : p a b -> f a -> b
export
Cosieve Morphism Identity where
cosieve (Mor f) = f . runIdentity
namespace Cosieve
||| A named implementation of `Cosieve` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Cosieve (\a,b => a -> b) Identity using Profunctor.Function where
cosieve = (. runIdentity)

View file

@ -1,3 +1,11 @@
||| This module defines profunctor strength with respect to a particular
||| monoidal structure.
|||
||| Unlike Haskell's profunctors library, `Strong` and `Choice` are here
||| special cases of the interface `GenStrong`, which defines strength with
||| respect to an arbitrary tensor product. When writing implementations for
||| a profunctor, `GenStrong Pair` and `GenStrong Either` should be used instead
||| of `Strong` and `Choice` respectively.
module Data.Profunctor.Strong
import Data.Morphisms
@ -7,50 +15,92 @@ import Data.Profunctor.Types
%default total
------------------------------------------------------------------------------
-- Strength interface
------------------------------------------------------------------------------
||| Profunctor strength with respect to a tensor product.
||| A strong profunctor preserves the monoidal structure of a category.
|||
||| These constraints are not required by the interface, but the tensor product
||| `ten` is generally expected to implement `(Tensor ten i, Symmetric ten)`.
|||
||| Laws:
||| * `strongl = dimap swap swap . strongr`
||| * `dimap unitr.rightToLeft unitr.leftToRight . strongl = id`
||| * `lmap (mapSnd f) . strongl = rmap (mapSnd f) . strongl`
||| * `strongr . strongr = dimap assoc.rightToLeft assoc.leftToRight . strongr`
|||
||| @ ten The tensor product of the monoidal structure
public export
interface Profunctor p => GenStrong (0 ten : Type -> Type -> Type) p where
||| The left action of a strong profunctor.
strongl : p a b -> p (a `ten` c) (b `ten` c)
||| The right action of a strong profunctor.
strongr : p a b -> p (c `ten` a) (c `ten` b)
||| Profunctor strength with respect to the product (`Pair`).
public export
Strong : (p : Type -> Type -> Type) -> Type
Strong = GenStrong Pair
||| A special case of `strongl` with constraint `Strong`.
||| This is useful if the typechecker has trouble inferring the tensor product.
%inline
public export
first : Strong p => p a b -> p (a, c) (b, c)
first = strongl {ten=Pair}
||| A special case of `strongr` with constraint `Strong`.
||| This is useful if the typechecker has trouble inferring the tensor product.
%inline
public export
second : Strong p => p a b -> p (c, a) (c, b)
second = strongr {ten=Pair}
||| Profunctor strength with respect to the coproduct (`Either`).
public export
Choice : (p : Type -> Type -> Type) -> Type
Choice = GenStrong Either
||| A special case of `strongl` with constraint `Choice`.
||| This is useful if the typechecker has trouble inferring the tensor product to use.
%inline
public export
left : Choice p => p a b -> p (Either a c) (Either b c)
left = strongl {ten=Either}
||| A special case of `strongr` with constraint `Choice`.
||| This is useful if the typechecker has trouble inferring the tensor product to use.
%inline
public export
right : Choice p => p a b -> p (Either c a) (Either c b)
right = strongr {ten=Either}
export
uncurry' : Strong p => p a (b -> c) -> p (a, b) c
uncurry' = rmap (uncurry id) . first
export
strong : Strong p => (a -> b -> c) -> p a b -> p a c
strong f = dimap dup (uncurry $ flip f) . first
------------------------------------------------------------------------------
-- Implementations for existing types
------------------------------------------------------------------------------
-- Implementations
export
Bifunctor ten => GenStrong ten Morphism where
strongl (Mor f) = Mor (mapFst f)
strongr (Mor f) = Mor (mapSnd f)
||| A named implementation of `GenStrong` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Bifunctor ten => GenStrong ten (\a,b => a -> b)
using Profunctor.Function where
@ -83,8 +133,13 @@ GenStrong Either Tagged where
strongr (Tag x) = Tag (Right x)
------------------------------------------------------------------------------
-- Tambara
------------------------------------------------------------------------------
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `GenStrong ten`.
public export
record GenTambara (ten, p : Type -> Type -> Type) a b where
constructor MkTambara
@ -114,10 +169,18 @@ Bifunctor ten => Profunctor p => Functor (GenTambara ten p a) where
map = rmap
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Strong`.
|||
||| This is a special case of `GenTambara`.
public export
Tambara : (p : Type -> Type -> Type) -> Type -> Type -> Type
Tambara = GenTambara Pair
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Choice`.
|||
||| This is a special case of `GenTambara`.
public export
TambaraSum : (p : Type -> Type -> Type) -> Type -> Type -> Type
TambaraSum = GenTambara Either
@ -132,8 +195,13 @@ untambara : Tensor ten i => Profunctor q => p :-> GenTambara ten q -> p :-> q
untambara f x = dimap unitr.rightToLeft unitr.leftToRight $ runTambara $ f x
------------------------------------------------------------------------------
-- Pastro
------------------------------------------------------------------------------
||| The monad generated by the reflective subcategory of profunctors that
||| implement `GenStrong ten`.
public export
data GenPastro : (ten, p : Type -> Type -> Type) -> Type -> Type -> Type where
MkPastro : (y `ten` z -> b) -> p x y -> (a -> x `ten` z) -> GenPastro ten p a b
@ -181,10 +249,18 @@ export
r' = mapSnd swap . assoc.rightToLeft . mapFst r . swap
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Strong`.
|||
||| This is a special case of `GenPastro`.
public export
Pastro : (p : Type -> Type -> Type) -> Type -> Type -> Type
Pastro = GenPastro Pair
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Choice`.
|||
||| This is a special case of `GenPastro`.
public export
PastroSum : (p : Type -> Type -> Type) -> Type -> Type -> Type
PastroSum = GenPastro Either

View file

@ -61,6 +61,20 @@ Traversable (Baz t b) where
traverse f bz = map (\m => MkBaz (runBazaar m)) $ runBaz bz @{Compose} $ \x => sell <$> f x
------------------------------------------------------------------------------
-- Traversing interface
------------------------------------------------------------------------------
||| The interface of profunctors that implement `wander`.
||| NOTE: Definitions in terms of `wander` are much more efficient!
|||
||| Laws:
||| * `traverse' = wander traverse`
||| * `traverse' . lmap f = lmap (map f) . traverse'`
||| * `traverse' . rmap f = rmap (map f) . traverse'`
||| * `traverse' . traverse' = traverse' @{Compose}`
||| * `dimap Id runIdentity . traverse' = id`
public export
interface (Strong p, Choice p) => Traversing p where
traverse' : Traversable f => p a b -> p (f a) (f b)
@ -75,6 +89,8 @@ Traversing Morphism where
traverse' (Mor f) = Mor (map f)
wander f (Mor p) = Mor (runIdentity . (f $ Id . p))
||| A named implementation of `Traversing` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Traversing (\a,b => a -> b) using Strong.Function where
traverse' = map
@ -91,9 +107,13 @@ Applicative f => Traversing (Star f) where
wander f (MkStar p) = MkStar (f p)
------------------------------------------------------------------------------
-- CofreeTraversing
------------------------------------------------------------------------------
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Traversing`.
public export
record CofreeTraversing p a b where
constructor MkCFT
@ -142,8 +162,13 @@ uncofreeTraversing : Profunctor q => p :-> CofreeTraversing q -> p :-> q
uncofreeTraversing f p = proextract $ f p
------------------------------------------------------------------------------
-- FreeTraversing
------------------------------------------------------------------------------
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Traversing`.
public export
data FreeTraversing : (p : Type -> Type -> Type) -> Type -> Type -> Type where
MkFT : Traversable f => (f y -> b) -> p x y -> (a -> f x) -> FreeTraversing p a b

View file

@ -1,3 +1,5 @@
||| This module contains the Profunctor interface itself, along with a few
||| examples of profunctors.
module Data.Profunctor.Types
import Data.Contravariant
@ -6,26 +8,56 @@ import Data.Morphisms
%default total
------------------------------------------------------------------------------
-- Profunctor interface
------------------------------------------------------------------------------
||| An interface for (self-enriched) profunctors `Idr -/-> Idr`.
|||
||| Formally, a profunctor is a binary functor that is contravariant in its
||| first argument and covariant in its second. A common example of a profunctor
||| is the (non-dependent) function type.
|||
||| Implementations can be defined by specifying either `dimap` or both `lmap`
||| and `rmap`.
|||
||| Laws:
||| * `dimap id id = id`
||| * `dimap (f . g) (h . i) = dimap g h . dimap f i`
public export
interface Profunctor p where
||| Map over both parameters of a profunctor at the same time, with the
||| left function argument mapping contravariantly.
dimap : (a -> b) -> (c -> d) -> p b c -> p a d
dimap f g = lmap f . rmap g
||| Map contravariantly over the first parameter of a profunctor.
lmap : (a -> b) -> p b c -> p a c
lmap f = dimap f id
||| Map covariantly over the second parameter of a profunctor.
rmap : (b -> c) -> p a b -> p a c
rmap = dimap id
infix 0 :->
||| A transformation between profunctors that preserves their type parameters.
|||
||| Formally, this is a natural transformation of functors `Idrᵒᵖ * Idr => Idr`.
|||
||| If the transformation is `tr`, then we have the following law:
||| * `tr . dimap f g = dimap f g . tr`
public export
0 (:->) : (p, q : k -> k' -> Type) -> Type
p :-> q = forall a, b. p a b -> q a b
-- Instances for existing types
------------------------------------------------------------------------------
-- Implementations for existing types
------------------------------------------------------------------------------
export
Profunctor Morphism where
@ -34,6 +66,8 @@ Profunctor Morphism where
rmap = map
namespace Profunctor
||| A named implementation of `Profunctor` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
export
[Function] Profunctor (\a,b => a -> b) where
dimap f g h = g . h . f
@ -47,8 +81,15 @@ Functor f => Profunctor (Kleislimorphism f) where
rmap = map
-- Examples of profunctors
------------------------------------------------------------------------------
-- Implementations for existing types
------------------------------------------------------------------------------
||| Lift a functor into a profunctor in the return type.
|||
||| This type is equivalent to `Kleislimorphism` except for the polymorphic type
||| of `b`.
public export
record Star {0 k : Type} (f : k -> Type) a (b : k) where
constructor MkStar
@ -81,6 +122,7 @@ Functor f => Profunctor (Star f) where
rmap f (MkStar g) = MkStar (map f . g)
||| Lift a functor into a profunctor in the argument type.
public export
record Costar {0 k : Type} (f : k -> Type) (a : k) b where
constructor MkCostar
@ -106,11 +148,14 @@ Functor f => Profunctor (Costar f) where
rmap f (MkCostar g) = MkCostar (f . g)
||| The profunctor that ignores its argument type.
||| Equivalent to `const id` up to isomorphism.
public export
record Tagged {0 k : Type} (a : k) b where
constructor Tag
runTagged : b
||| Retag the value with a different type-level parameter.
public export
retag : Tagged a c -> Tagged b c
retag (Tag x) = Tag x

View file

@ -9,6 +9,12 @@ import Data.Profunctor.Sieve
%default total
------------------------------------------------------------------------------
-- Yoneda
------------------------------------------------------------------------------
||| The cofree profunctor given a data constructor with two type parameters.
public export
record Yoneda p a b where
constructor MkYoneda
@ -34,6 +40,7 @@ ProfunctorComonad Yoneda where
proextract (MkYoneda p) = p id id
produplicate p = MkYoneda $ \l,r => dimap l r p
||| A witness that `Yoneda p` and `p` are equivalent when `p` is a profunctor.
export
yonedaEqv : Profunctor p => p a b <=> Yoneda p a b
yonedaEqv = MkEquivalence propure proextract
@ -75,6 +82,12 @@ Cosieve p f => Cosieve (Yoneda p) f where
cosieve = cosieve . proextract
------------------------------------------------------------------------------
-- Coyoneda
------------------------------------------------------------------------------
||| The free profunctor given a data constructor with two type parameters.
public export
data Coyoneda : (p : Type -> Type -> Type) -> Type -> Type -> Type where
MkCoyoneda : (a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
@ -100,6 +113,7 @@ ProfunctorComonad Coyoneda where
proextract (MkCoyoneda l r p) = dimap l r p
produplicate = MkCoyoneda id id
||| A witness that `Coyoneda p` and `p` are equivalent when `p` is a profunctor.
export
coyonedaEqv : Profunctor p => p a b <=> Coyoneda p a b
coyonedaEqv = MkEquivalence propure proextract

View file

@ -1,12 +1,29 @@
||| This module defines tensor products, which are later used to define
||| the concept of profunctor strength. The two primary tensor products
||| in `Idr` are the product (`Pair`) and the coproduct (`Either`).
module Data.Tensor
%default total
------------------------------------------------------------------------------
-- Tensor products
------------------------------------------------------------------------------
||| A bifunctor that admits an *associator*, i.e. a bifunctor that is
||| associative up to isomorphism.
|||
||| Laws:
||| * `mapFst assoc.rightToLeft . assoc.leftToRight . assoc.leftToRight = assoc.leftToRight . mapSnd assoc.leftToRight`
public export
interface Bifunctor ten => Associative ten where
assoc : a `ten` (b `ten` c) <=> (a `ten` b) `ten` c
||| A bifunctor that admits a swap map, i.e. a bifunctor that is
||| symmetric up to isomorphism.
|||
||| The bifunctor `ten` is generally also associative.
public export
interface Bifunctor ten => Symmetric ten where
swap : a `ten` b -> b `ten` a
@ -16,13 +33,23 @@ interface Bifunctor ten => Symmetric ten where
symmetric = MkEquivalence swap swap
||| A tensor product is an associative bifunctor that has an identity element
||| up to isomorphism. Tensor products constitute the monoidal structure of a
||| monoidal category.
|||
||| Laws:
||| * `mapSnd unitl.leftToRight = mapFst unitr.leftToRight . assoc.leftToRight`
public export
interface Associative ten => Tensor ten i | ten where
unitl : i `ten` a <=> a
unitr : a `ten` i <=> a
------------------------------------------------------------------------------
-- Cartesian monoidal structure
------------------------------------------------------------------------------
export
Associative Pair where
assoc = MkEquivalence (\(x,(y,z)) => ((x,y),z)) (\((x,y),z) => (x,(y,z)))
@ -37,6 +64,11 @@ Tensor Pair () where
unitr = MkEquivalence fst (,())
------------------------------------------------------------------------------
-- Cocartesian monoidal structure
------------------------------------------------------------------------------
export
Associative Either where
assoc = MkEquivalence f b