Created abbreviations for common geometry types

This commit is contained in:
bijan2005 2021-01-23 23:27:54 -05:00
parent ed6e84a240
commit 07445dd4be
8 changed files with 70 additions and 57 deletions

View file

@ -19,11 +19,11 @@ pub trait Surface {
// Takes in a point (assumed to be on the object's surface) // Takes in a point (assumed to be on the object's surface)
// and returns the normal vector off of that point. // and returns the normal vector off of that point.
fn normal(&self, point: Point3<f32>) -> Unit<Vector3<f32>>; fn normal(&self, point: Point3f) -> Unit3f;
// Takes in a point (assumed to be on the object's surface) // Takes in a point (assumed to be on the object's surface)
// and returns the color information on that point. // and returns the color information on that point.
fn getcolor(&self, point: Point3<f32>) -> Color; fn getcolor(&self, point: Point3f) -> Color;
// Creates a bounding sphere around the object. // Creates a bounding sphere around the object.
fn bound(&self) -> Bound; fn bound(&self) -> Bound;
@ -50,14 +50,17 @@ impl Object {
self.surface.intersect(ray) self.surface.intersect(ray)
} else { None } } else { None }
} }
pub fn normal(&self, point: Point3<f32>) -> Unit<Vector3<f32>> { self.surface.normal(point) } pub fn normal(&self, point: Point3f) -> Unit3f { self.surface.normal(point) }
pub fn getcolor(&self, point: Point3<f32>) -> Color { self.surface.getcolor(point) } pub fn getcolor(&self, point: Point3f) -> Color { self.surface.getcolor(point) }
} }
pub trait Light { pub trait Light {
// Determine if the light is able to illuminate the point. // Determine if the light is able to illuminate the point.
// If so, return the color of the light. // If so, return the color of the light.
fn illuminate(&self, point: Point3<f32>, objects: &Vec<Object>) -> Option<Color>; fn illuminate(&self, point: Point3f, objects: &Vec<Object>) -> Option<Color>;
// Return the direction from the point to the light source.
fn direction(&self, point: Point3f) -> Unit3f;
} }
pub struct Scene { pub struct Scene {

View file

@ -3,13 +3,13 @@ extern crate nalgebra as na;
// use na::distance; // use na::distance;
use na::geometry::Point3; use na::geometry::Point3;
use crate::types::Ray; use crate::types::*;
// A bounding sphere, used for // A bounding sphere, used for
// intersection test optimization. // intersection test optimization.
#[derive(Debug)] #[derive(Debug)]
pub struct Bound { pub struct Bound {
pub center: Point3<f32>, pub center: Point3f,
pub radius: f32, pub radius: f32,
// If true, then the bounding sphere is disabled. // If true, then the bounding sphere is disabled.
@ -24,7 +24,7 @@ impl Bound {
l.norm_squared() >= self.radius * self.radius l.norm_squared() >= self.radius * self.radius
} }
// pub fn contains(&self, point: &Point3<f32>) -> bool { distance(&self.center, point) < self.radius } // pub fn contains(&self, point: &Point3f) -> bool { distance(&self.center, point) < self.radius }
pub fn bypass() -> Self { Bound { center: Point3::origin(), radius: 0.0, bypass: true } } pub fn bypass() -> Self { Bound { center: Point3::origin(), radius: 0.0, bypass: true } }
} }

View file

@ -7,11 +7,11 @@ use crate::types::*;
use super::{Surface, bound::*}; use super::{Surface, bound::*};
pub struct Plane { pub struct Plane {
pub center: Point3<f32>, // Plane origin (used for texture mapping). pub center: Point3f, // Plane origin (used for texture mapping).
pub normal: Unit<Vector3<f32>>, // Precomputed plane normal. pub normal: Unit3f, // Precomputed plane normal.
x_axis: Vector3<f32>, // Plane x-axis (The 3D direction that corresponds to the x-direction on the plane). x_axis: Vector3f, // Plane x-axis (The 3D direction that corresponds to the x-direction on the plane).
y_axis: Vector3<f32>, // Plane y-axis (The 3D direction that corresponds to the y-direction on the plane). y_axis: Vector3f, // Plane y-axis (The 3D direction that corresponds to the y-direction on the plane).
texture: Box<dyn Fn(f32, f32) -> Color> // Texture map. texture: Box<dyn Fn(f32, f32) -> Color> // Texture map.
// Input coordinates are defined in terms of the axes above. // Input coordinates are defined in terms of the axes above.
@ -20,7 +20,7 @@ pub struct Plane {
#[allow(dead_code)] #[allow(dead_code)]
impl Plane { impl Plane {
// Creates a new plane. // Creates a new plane.
pub fn new<F: 'static>(center: Point3<f32>, x_axis: Vector3<f32>, y_axis: Vector3<f32>, texture: F) -> Self pub fn new<F: 'static>(center: Point3f, x_axis: Vector3f, y_axis: Vector3f, texture: F) -> Self
where F: Fn(f32, f32) -> Color where F: Fn(f32, f32) -> Color
{ {
Plane { Plane {
@ -33,7 +33,7 @@ impl Plane {
} }
// Creates a new plane with the normal flipped. // Creates a new plane with the normal flipped.
pub fn new_flip<F: 'static>(center: Point3<f32>, x_axis: Vector3<f32>, y_axis: Vector3<f32>, texture: F) -> Self pub fn new_flip<F: 'static>(center: Point3f, x_axis: Vector3f, y_axis: Vector3f, texture: F) -> Self
where F: Fn(f32, f32) -> Color where F: Fn(f32, f32) -> Color
{ {
Plane { Plane {
@ -46,11 +46,11 @@ impl Plane {
} }
// Creates a new plane of a solid color. // Creates a new plane of a solid color.
pub fn new_solid(center: Point3<f32>, x_axis: Vector3<f32>, y_axis: Vector3<f32>, color: Color) -> Self pub fn new_solid(center: Point3f, x_axis: Vector3f, y_axis: Vector3f, color: Color) -> Self
{ Plane::new(center, x_axis, y_axis, move |_, _| color) } { Plane::new(center, x_axis, y_axis, move |_, _| color) }
// Creates a new flipped plane of a solid color. // Creates a new flipped plane of a solid color.
pub fn new_solid_flip(center: Point3<f32>, x_axis: Vector3<f32>, y_axis: Vector3<f32>, color: Color) -> Self pub fn new_solid_flip(center: Point3f, x_axis: Vector3f, y_axis: Vector3f, color: Color) -> Self
{ Plane::new_flip(center, x_axis, y_axis, move |_, _| color) } { Plane::new_flip(center, x_axis, y_axis, move |_, _| color) }
@ -75,9 +75,9 @@ impl Surface for Plane {
else { None } else { None }
} }
fn normal(&self, _point: Point3<f32>) -> Unit<Vector3<f32>> { self.normal } fn normal(&self, _point: Point3f) -> Unit3f { self.normal }
fn getcolor(&self, point: Point3<f32>) -> Color { fn getcolor(&self, point: Point3f) -> Color {
let rel_pos = point - self.center; let rel_pos = point - self.center;
let proj_point3 = rel_pos - (*self.normal * self.normal.dot(&rel_pos)); let proj_point3 = rel_pos - (*self.normal * self.normal.dot(&rel_pos));

View file

@ -7,19 +7,21 @@ use crate::types::*;
use super::*; use super::*;
pub struct PointLight { pub struct PointLight {
pub pos: Point3<f32>, pub pos: Point3f,
pub color: Color pub color: Color,
pub intensity: f32
} }
impl PointLight { impl PointLight {
pub fn new(pos: Point3<f32>, color: Color) -> PointLight { pub fn new(pos: Point3f, color: Color, intensity: f32) -> PointLight {
PointLight { PointLight {
pos: pos, pos: pos,
color: color color: color,
intensity: intensity
} }
} }
fn check_point(&self, point: Point3<f32>, objects: &Vec<Object>) -> bool { fn check_point(&self, point: Point3f, objects: &Vec<Object>) -> bool {
let max_d = distance(&self.pos, &point); let max_d = distance(&self.pos, &point);
objects.iter() objects.iter()
.filter_map(|obj| obj.intersect(Ray::from_points(self.pos, point))) .filter_map(|obj| obj.intersect(Ray::from_points(self.pos, point)))
@ -28,9 +30,13 @@ impl PointLight {
} }
impl Light for PointLight { impl Light for PointLight {
fn illuminate(&self, point: Point3<f32>, objects: &Vec<Object>) -> Option<Color> { fn illuminate(&self, point: Point3f, objects: &Vec<Object>) -> Option<Color> {
if self.check_point(point, objects) { if self.check_point(point, objects) {
Some(self.color) Some(self.color)
} else { None } } else { None }
} }
fn direction(&self, point: Point3f) -> Unit3f {
Unit::new_normalize(self.pos - point)
}
} }

View file

@ -9,7 +9,7 @@ use crate::types::*;
use super::{Surface, bound::*}; use super::{Surface, bound::*};
pub struct Sphere { pub struct Sphere {
pub center: Point3<f32>, // Center point of the sphere. pub center: Point3f, // Center point of the sphere.
pub radius: f32, // Radius of the sphere. pub radius: f32, // Radius of the sphere.
texture: Box<dyn Fn(f32, f32) -> Color> // Texture map. texture: Box<dyn Fn(f32, f32) -> Color> // Texture map.
@ -62,11 +62,11 @@ impl Surface for Sphere {
else { None } else { None }
} }
fn normal(&self, point: Point3<f32>) -> Unit<Vector3<f32>> { fn normal(&self, point: Point3f) -> Unit3f {
Unit::new_normalize(point - self.center) Unit::new_normalize(point - self.center)
} }
fn getcolor(&self, point: Point3<f32>) -> Color { fn getcolor(&self, point: Point3f) -> Color {
let normal = self.normal(point); let normal = self.normal(point);
// In this particular case, the normal is simular to a point on a unit sphere // In this particular case, the normal is simular to a point on a unit sphere

View file

@ -13,7 +13,7 @@ pub struct Triangle {
pub v2: usize, pub v2: usize,
pub v3: usize, pub v3: usize,
normal: Unit<Vector3<f32>>, // Precalculated normal vector. normal: Unit3f, // Precalculated normal vector.
area: f32, // Precalculated area for barycentric calculations. area: f32, // Precalculated area for barycentric calculations.
texture: Box<dyn Fn(f32, f32, f32) -> Color> // Texture map. texture: Box<dyn Fn(f32, f32, f32) -> Color> // Texture map.
@ -21,28 +21,28 @@ pub struct Triangle {
} }
pub struct TriangleMesh { pub struct TriangleMesh {
pub vertices: Vec<Point3<f32>>, pub vertices: Vec<Point3f>,
pub tris: Vec<Triangle> pub tris: Vec<Triangle>
} }
fn tri_area(a: &Point3<f32>, b: &Point3<f32>, c: &Point3<f32>) -> f32 { fn tri_area(a: &Point3f, b: &Point3f, c: &Point3f) -> f32 {
let prlg_area: f32 = (b - a).cross(&(c - a)).norm(); let prlg_area: f32 = (b - a).cross(&(c - a)).norm();
prlg_area / 2.0 prlg_area / 2.0
} }
impl Triangle { impl Triangle {
fn vertex1<'a>(&self, vertices: &'a Vec<Point3<f32>>) -> &'a Point3<f32> { &vertices[self.v1] } fn vertex1<'a>(&self, vertices: &'a Vec<Point3f>) -> &'a Point3f { &vertices[self.v1] }
fn vertex2<'a>(&self, vertices: &'a Vec<Point3<f32>>) -> &'a Point3<f32> { &vertices[self.v2] } fn vertex2<'a>(&self, vertices: &'a Vec<Point3f>) -> &'a Point3f { &vertices[self.v2] }
fn vertex3<'a>(&self, vertices: &'a Vec<Point3<f32>>) -> &'a Point3<f32> { &vertices[self.v3] } fn vertex3<'a>(&self, vertices: &'a Vec<Point3f>) -> &'a Point3f { &vertices[self.v3] }
// Conversion of barycentric coordinates to // Conversion of barycentric coordinates to
// a point on the triangle. // a point on the triangle.
fn from_bary(&self, vertices: &Vec<Point3<f32>>, t: f32, u: f32, v: f32) -> Point3<f32> { fn from_bary(&self, vertices: &Vec<Point3f>, t: f32, u: f32, v: f32) -> Point3f {
Point::from(t * self.vertex1(vertices).coords + u * self.vertex2(vertices).coords + v * self.vertex3(vertices).coords) Point::from(t * self.vertex1(vertices).coords + u * self.vertex2(vertices).coords + v * self.vertex3(vertices).coords)
} }
// Conversion of a point to barycentric coordinates. // Conversion of a point to barycentric coordinates.
fn to_bary(&self, vertices: &Vec<Point3<f32>>, point: Point3<f32>) -> (f32, f32, f32) { fn to_bary(&self, vertices: &Vec<Point3f>, point: Point3f) -> (f32, f32, f32) {
let t = tri_area(self.vertex2(vertices), self.vertex3(vertices), &point) / self.area; let t = tri_area(self.vertex2(vertices), self.vertex3(vertices), &point) / self.area;
let u = tri_area(self.vertex1(vertices), self.vertex3(vertices), &point) / self.area; let u = tri_area(self.vertex1(vertices), self.vertex3(vertices), &point) / self.area;
let v = tri_area(self.vertex1(vertices), self.vertex2(vertices), &point) / self.area; let v = tri_area(self.vertex1(vertices), self.vertex2(vertices), &point) / self.area;
@ -50,7 +50,7 @@ impl Triangle {
(t, u, v) (t, u, v)
} }
fn intersect_(&self, vertices: &Vec<Point3<f32>>, ray: Ray) -> Option<(f32, f32, f32)> { fn intersect_(&self, vertices: &Vec<Point3f>, ray: Ray) -> Option<(f32, f32, f32)> {
let vect2_1 = self.vertex2(vertices) - self.vertex1(vertices); let vect2_1 = self.vertex2(vertices) - self.vertex1(vertices);
let vect3_1 = self.vertex3(vertices) - self.vertex1(vertices); let vect3_1 = self.vertex3(vertices) - self.vertex1(vertices);
@ -74,11 +74,11 @@ impl Triangle {
Some((t, u, v)) Some((t, u, v))
} }
fn intersect(&self, vertices: &Vec<Point3<f32>>, ray: Ray) -> Option<f32> { fn intersect(&self, vertices: &Vec<Point3f>, ray: Ray) -> Option<f32> {
self.intersect_(vertices, ray).map(|(t, u, v)| distance(&ray.origin, &self.from_bary(vertices, t, u, v))) self.intersect_(vertices, ray).map(|(t, u, v)| distance(&ray.origin, &self.from_bary(vertices, t, u, v)))
} }
fn getcolor(&self, vertices: &Vec<Point3<f32>>, point: Point3<f32>) -> Color { fn getcolor(&self, vertices: &Vec<Point3f>, point: Point3f) -> Color {
let (t, u, v) = self.to_bary(vertices, point); let (t, u, v) = self.to_bary(vertices, point);
(*self.texture)(t, u, v) (*self.texture)(t, u, v)
} }
@ -86,7 +86,7 @@ impl Triangle {
#[allow(dead_code)] #[allow(dead_code)]
impl TriangleMesh { impl TriangleMesh {
pub fn new(vertices: Vec<Point3<f32>>, tris: Vec<(usize, usize, usize, Box<dyn Fn(f32, f32, f32) -> Color>)>) -> Self { pub fn new(vertices: Vec<Point3f>, tris: Vec<(usize, usize, usize, Box<dyn Fn(f32, f32, f32) -> Color>)>) -> Self {
let triangles = tris.into_iter() let triangles = tris.into_iter()
.map(|(v1, v2, v3, f)| Triangle { .map(|(v1, v2, v3, f)| Triangle {
v1: v1, v1: v1,
@ -102,7 +102,7 @@ impl TriangleMesh {
} }
} }
pub fn new_solid(vertices: Vec<Point3<f32>>, tris: Vec<(usize, usize, usize)>, color: Color) -> Self { pub fn new_solid(vertices: Vec<Point3f>, tris: Vec<(usize, usize, usize)>, color: Color) -> Self {
let triangles = tris.into_iter() let triangles = tris.into_iter()
.map(|(v1, v2, v3)| Triangle { .map(|(v1, v2, v3)| Triangle {
v1: v1, v1: v1,
@ -118,15 +118,15 @@ impl TriangleMesh {
} }
} }
pub fn singleton<F: 'static>(vertex1: Point3<f32>, vertex2: Point3<f32>, vertex3: Point3<f32>, texture: F) -> Self pub fn singleton<F: 'static>(vertex1: Point3f, vertex2: Point3f, vertex3: Point3f, texture: F) -> Self
where F: Fn(f32, f32, f32) -> Color where F: Fn(f32, f32, f32) -> Color
{ TriangleMesh::new(vec![vertex1, vertex2, vertex3], vec![(0, 1, 2, Box::new(texture))]) } { TriangleMesh::new(vec![vertex1, vertex2, vertex3], vec![(0, 1, 2, Box::new(texture))]) }
pub fn singleton_solid(vertex1: Point3<f32>, vertex2: Point3<f32>, vertex3: Point3<f32>, color: Color) -> Self pub fn singleton_solid(vertex1: Point3f, vertex2: Point3f, vertex3: Point3f, color: Color) -> Self
{ TriangleMesh::singleton(vertex1, vertex2, vertex3, move |_, _, _| color) } { TriangleMesh::singleton(vertex1, vertex2, vertex3, move |_, _, _| color) }
fn closest_tri(&self, point: Point3<f32>) -> &Triangle { fn closest_tri(&self, point: Point3f) -> &Triangle {
self.tris.iter() self.tris.iter()
.map(move |tri| { .map(move |tri| {
@ -155,17 +155,17 @@ impl Surface for TriangleMesh {
.min_by(|a, b| a.partial_cmp(&b).unwrap_or(Ordering::Equal)) .min_by(|a, b| a.partial_cmp(&b).unwrap_or(Ordering::Equal))
} }
fn normal(&self, point: Point3<f32>) -> Unit<Vector3<f32>> { fn normal(&self, point: Point3f) -> Unit3f {
self.closest_tri(point).normal self.closest_tri(point).normal
} }
fn getcolor(&self, point: Point3<f32>) -> Color { fn getcolor(&self, point: Point3f) -> Color {
self.closest_tri(point).getcolor(&self.vertices, point) self.closest_tri(point).getcolor(&self.vertices, point)
} }
// Uses Welzl's algorithm to solve the bounding sphere problem // Uses Welzl's algorithm to solve the bounding sphere problem
fn bound(&self) -> Bound { fn bound(&self) -> Bound {
fn triangle_sphere(point1: &Point3<f32>, point2: &Point3<f32>, point3: &Point3<f32>) -> (Point3<f32>, f32) { fn triangle_sphere(point1: &Point3f, point2: &Point3f, point3: &Point3f) -> (Point3f, f32) {
let a = point3 - point1; let a = point3 - point1;
let b = point2 - point1; let b = point2 - point1;
@ -179,7 +179,7 @@ impl Surface for TriangleMesh {
(point1 + to_center, radius) (point1 + to_center, radius)
} }
fn tetrahedron_sphere(point1: &Point3<f32>, point2: &Point3<f32>, point3: &Point3<f32>, point4: &Point3<f32>) -> (Point3<f32>, f32) { fn tetrahedron_sphere(point1: &Point3f, point2: &Point3f, point3: &Point3f, point4: &Point3f) -> (Point3f, f32) {
let matrix = Matrix4::from_rows(&[point1.to_homogeneous().transpose(), let matrix = Matrix4::from_rows(&[point1.to_homogeneous().transpose(),
point2.to_homogeneous().transpose(), point2.to_homogeneous().transpose(),
point3.to_homogeneous().transpose(), point3.to_homogeneous().transpose(),
@ -204,7 +204,7 @@ impl Surface for TriangleMesh {
(center, radius) (center, radius)
} }
fn smallest_sphere(points: Vec<&Point3<f32>>, boundary: Vec<&Point3<f32>>) -> (Point3<f32>, f32) { fn smallest_sphere(points: Vec<&Point3f>, boundary: Vec<&Point3f>) -> (Point3f, f32) {
if points.len() == 0 || boundary.len() == 4 { if points.len() == 0 || boundary.len() == 4 {
match boundary.len() { match boundary.len() {
0 => (Point3::new(0.0, 0.0, 0.0), 0.0), 0 => (Point3::new(0.0, 0.0, 0.0), 0.0),
@ -233,7 +233,7 @@ impl Surface for TriangleMesh {
use rand::thread_rng; use rand::thread_rng;
use rand::seq::SliceRandom; use rand::seq::SliceRandom;
let mut points: Vec<&Point3<f32>> = self.vertices.iter().collect(); let mut points: Vec<&Point3f> = self.vertices.iter().collect();
points.shuffle(&mut thread_rng()); points.shuffle(&mut thread_rng());
let (center, radius) = smallest_sphere(points, Vec::new()); let (center, radius) = smallest_sphere(points, Vec::new());

View file

@ -18,8 +18,8 @@ fn trace(ray: Ray, objects: &Vec<Object>) -> Option<(&Object, f32)> {
pub fn cast_ray(ray: Ray, scene: &Scene) -> Color { pub fn cast_ray(ray: Ray, scene: &Scene) -> Color {
if let Some((obj, dist)) = trace(ray, &scene.objects) { if let Some((obj, dist)) = trace(ray, &scene.objects) {
let point = ray.project(dist); let point = ray.project(dist);
let surface_color = obj.getcolor(point);
obj.getcolor(point) surface_color
} }
else { scene.background } else { scene.background }
} }

View file

@ -5,23 +5,27 @@ use std::ops::{Add, Mul};
use na::*; use na::*;
use na::geometry::Point3; use na::geometry::Point3;
pub type Point3f = Point3<f32>;
pub type Vector3f = Vector3<f32>;
pub type Unit3f = Unit<Vector3<f32>>;
#[derive(Clone, Copy, Debug)] #[derive(Clone, Copy, Debug)]
pub struct Ray { pub struct Ray {
pub origin: Point3<f32>, pub origin: Point3f,
pub direction: Unit<Vector3<f32>> pub direction: Unit3f
} }
impl Ray { impl Ray {
pub fn from_parts(origin: Point3<f32>, direction: Unit<Vector3<f32>>) -> Self { pub fn from_parts(origin: Point3f, direction: Unit3f) -> Self {
Ray { Ray {
origin: origin, origin: origin,
direction: direction direction: direction
} }
} }
pub fn new(origin: Point3<f32>, direction: Vector3<f32>) -> Self { Ray::from_parts(origin, Unit::new_normalize(direction)) } pub fn new(origin: Point3f, direction: Vector3f) -> Self { Ray::from_parts(origin, Unit::new_normalize(direction)) }
pub fn from_points(origin: Point3<f32>, points_to: Point3<f32>) -> Self { Ray::new(origin, points_to - origin) } pub fn from_points(origin: Point3f, points_to: Point3f) -> Self { Ray::new(origin, points_to - origin) }
pub fn project(&self, t: f32) -> Point3<f32> { self.origin + t * self.direction.into_inner() } pub fn project(&self, t: f32) -> Point3f { self.origin + t * self.direction.into_inner() }
} }
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq)]