Tweak library functions to match reps

This commit is contained in:
Kiana Sheibani 2023-09-25 23:47:58 -04:00
parent 983733f241
commit b924d960b5
Signed by: toki
GPG key ID: 6CB106C25E86A9F7
8 changed files with 123 additions and 103 deletions

View file

@ -5,8 +5,8 @@ import Data.Vect
import Data.Permutation
import Data.NumIdr.Interfaces
import public Data.NumIdr.Array
import Data.NumIdr.PrimArray
import Data.NumIdr.Vector
import Data.NumIdr.LArray
%default total
@ -31,13 +31,9 @@ Matrix' n = Array [n,n]
||| Construct a matrix with the given order and elements.
export
matrix' : {m, n : _} -> Order -> Vect m (Vect n a) -> Matrix m n a
matrix' ord x = array' [m,n] ord x
||| Construct a matrix with the given elements.
export
matrix : {m, n : _} -> Vect m (Vect n a) -> Matrix m n a
matrix = matrix' COrder
matrix : {default B rep : Rep} -> RepConstraint rep a => {m, n : _} ->
Vect m (Vect n a) -> Matrix m n a
matrix x = array' {rep} [m,n] x
||| Construct a matrix with a specific value along the diagonal.
@ -45,8 +41,9 @@ matrix = matrix' COrder
||| @ diag The value to repeat along the diagonal
||| @ other The value to repeat elsewhere
export
repeatDiag : {m, n : _} -> (diag, other : a) -> Matrix m n a
repeatDiag d o = fromFunctionNB [m,n]
repeatDiag : {default B rep : Rep} -> RepConstraint rep a => {m, n : _} ->
(diag, other : a) -> Matrix m n a
repeatDiag d o = fromFunctionNB {rep} [m,n]
(\[i,j] => if i == j then d else o)
||| Construct a matrix given its diagonal elements.
@ -54,8 +51,9 @@ repeatDiag d o = fromFunctionNB [m,n]
||| @ diag The elements of the matrix's diagonal
||| @ other The value to repeat elsewhere
export
fromDiag : {m, n : _} -> (diag : Vect (minimum m n) a) -> (other : a) -> Matrix m n a
fromDiag ds o = fromFunction [m,n] (\[i,j] => maybe o (`index` ds) $ i `eq` j)
fromDiag : {default B rep : Rep} -> RepConstraint rep a => {m, n : _} ->
(diag : Vect (minimum m n) a) -> (other : a) -> Matrix m n a
fromDiag ds o = fromFunction {rep} [m,n] (\[i,j] => maybe o (`index` ds) $ i `eq` j)
where
eq : {0 m,n : Nat} -> Fin m -> Fin n -> Maybe (Fin (minimum m n))
eq FZ FZ = Just FZ
@ -66,52 +64,62 @@ fromDiag ds o = fromFunction [m,n] (\[i,j] => maybe o (`index` ds) $ i `eq` j)
||| Construct a permutation matrix based on the given permutation.
export
permuteM : {n : _} -> Num a => Permutation n -> Matrix' n a
permuteM p = permuteInAxis 0 p (repeatDiag 1 0)
permuteM : {default B rep : Rep} -> RepConstraint rep a => {n : _} -> Num a =>
Permutation n -> Matrix' n a
permuteM p = permuteInAxis 0 p (repeatDiag {rep} 1 0)
||| Construct the matrix that scales a vector by the given value.
export
scale : {n : _} -> Num a => a -> Matrix' n a
scale x = repeatDiag x 0
scale : {default B rep : Rep} -> RepConstraint rep a => {n : _} -> Num a =>
a -> Matrix' n a
scale x = repeatDiag {rep} x 0
||| Construct a 2D rotation matrix that rotates by the given angle (in radians).
export
rotate2D : Double -> Matrix' 2 Double
rotate2D a = matrix [[cos a, - sin a], [sin a, cos a]]
rotate2D : {default B rep : Rep} -> RepConstraint rep Double =>
Double -> Matrix' 2 Double
rotate2D a = matrix {rep} [[cos a, - sin a], [sin a, cos a]]
||| Construct a 3D rotation matrix around the x-axis.
export
rotate3DX : Double -> Matrix' 3 Double
rotate3DX a = matrix [[1,0,0], [0, cos a, - sin a], [0, sin a, cos a]]
rotate3DX : {default B rep : Rep} -> RepConstraint rep Double =>
Double -> Matrix' 3 Double
rotate3DX a = matrix {rep} [[1,0,0], [0, cos a, - sin a], [0, sin a, cos a]]
||| Construct a 3D rotation matrix around the y-axis.
export
rotate3DY : Double -> Matrix' 3 Double
rotate3DY a = matrix [[cos a, 0, sin a], [0,1,0], [- sin a, 0, cos a]]
rotate3DY : {default B rep : Rep} -> RepConstraint rep Double =>
Double -> Matrix' 3 Double
rotate3DY a = matrix {rep} [[cos a, 0, sin a], [0,1,0], [- sin a, 0, cos a]]
||| Construct a 3D rotation matrix around the z-axis.
export
rotate3DZ : Double -> Matrix' 3 Double
rotate3DZ a = matrix [[cos a, - sin a, 0], [sin a, cos a, 0], [0,0,1]]
rotate3DZ : {default B rep : Rep} -> RepConstraint rep Double =>
Double -> Matrix' 3 Double
rotate3DZ a = matrix {rep} [[cos a, - sin a, 0], [sin a, cos a, 0], [0,0,1]]
export
reflect : {n : _} -> Neg a => Fin n -> Matrix' n a
reflect i = indexSet [i, i] (-1) (repeatDiag 1 0)
reflect : {default B rep : Rep} -> RepConstraint rep a =>
{n : _} -> Neg a => Fin n -> Matrix' n a
reflect i = indexSet [i, i] (-1) (repeatDiag {rep} 1 0)
export
reflectX : {n : _} -> Neg a => Matrix' (1 + n) a
reflectX = reflect 0
reflectX : {default B rep : Rep} -> RepConstraint rep a =>
{n : _} -> Neg a => Matrix' (1 + n) a
reflectX = reflect {rep} 0
export
reflectY : {n : _} -> Neg a => Matrix' (2 + n) a
reflectY = reflect 1
reflectY : {default B rep : Rep} -> RepConstraint rep a =>
{n : _} -> Neg a => Matrix' (2 + n) a
reflectY = reflect {rep} 1
export
reflectZ : {n : _} -> Neg a => Matrix' (3 + n) a
reflectZ = reflect 2
reflectZ : {default B rep : Rep} -> RepConstraint rep a =>
{n : _} -> Neg a => Matrix' (3 + n) a
reflectZ = reflect {rep} 2
--------------------------------------------------------------------------------
@ -146,13 +154,13 @@ getColumn c mat = rewrite sym (rangeLenZ m) in mat!!..[All, One c]
export
diagonal' : Matrix m n a -> Vector (minimum m n) a
diagonal' {m,n} mat with (viewShape mat)
_ | Shape [m,n] = fromFunctionNB _ (\[i] => mat!#[i,i])
_ | Shape [m,n] = fromFunctionNB {rep=_} @{getRepC mat} _ (\[i] => mat!#[i,i])
||| Return the diagonal elements of the matrix as a vector.
export
diagonal : Matrix' n a -> Vector n a
diagonal {n} mat with (viewShape mat)
_ | Shape [n,n] = fromFunctionNB [n] (\[i] => mat!#[i,i])
_ | Shape [n,n] = fromFunctionNB {rep=_} @{getRepC mat} [n] (\[i] => mat!#[i,i])
||| Return a minor of the matrix, i.e. the matrix formed by removing a
@ -165,7 +173,8 @@ minor i j mat = believe_me $ mat!!..[Filter (/=i), Filter (/=j)]
filterInd : Num a => (Nat -> Nat -> Bool) -> Matrix m n a -> Matrix m n a
filterInd {m,n} p mat with (viewShape mat)
_ | Shape [m,n] = fromFunctionNB [m,n] (\[i,j] => if p i j then mat!#[i,j] else 0)
_ | Shape [m,n] = fromFunctionNB {rep=_} @{getRepC mat}
[m,n] (\[i,j] => if p i j then mat!#[i,j] else 0)
export
upperTriangle : Num a => Matrix m n a -> Matrix m n a
@ -259,13 +268,15 @@ reflectNormal {n} v with (viewShape v)
export
Num a => Mult (Matrix m n a) (Vector n a) (Vector m a) where
(*.) {m,n} mat v with (viewShape mat)
_ | Shape [m,n] = fromFunction [m]
_ | Shape [m,n] = fromFunction {rep=_}
@{mergeRepConstraint (getRepC mat) (getRepC v)} [m]
(\[i] => sum $ map (\j => mat!![i,j] * v!!j) range)
export
Num a => Mult (Matrix m n a) (Matrix n p a) (Matrix m p a) where
(*.) {m,n,p} m1 m2 with (viewShape m1, viewShape m2)
_ | (Shape [m,n], Shape [n,p]) = fromFunction [m,p]
_ | (Shape [m,n], Shape [n,p]) = fromFunction {rep=_}
@{mergeRepConstraint (getRepC m1) (getRepC m2)} [m,p]
(\[i,j] => sum $ map (\k => m1!![i,k] * m2!![k,j]) range)
export
@ -295,7 +306,7 @@ namespace DecompLU
export
lower : Num a => DecompLU {m,n,a} mat -> Matrix m (minimum m n) a
lower {m,n} (MkLU lu) with (viewShape lu)
_ | Shape [m,n] = fromFunctionNB _ (\[i,j] =>
_ | Shape [m,n] = fromFunctionNB {rep=_} @{getRepC lu} _ (\[i,j] =>
case compare i j of
LT => 0
EQ => 1
@ -325,7 +336,7 @@ namespace DecompLU
export
upper : Num a => DecompLU {m,n,a} mat -> Matrix (minimum m n) n a
upper {m,n} (MkLU lu) with (viewShape lu)
_ | Shape [m,n] = fromFunctionNB _ (\[i,j] =>
_ | Shape [m,n] = fromFunctionNB {rep=_} @{getRepC lu} _ (\[i,j] =>
if i <= j then lu!#[i,j] else 0)
||| The upper triangular matrix U of the LU decomposition.
@ -392,7 +403,8 @@ gaussStep i lu =
export
decompLU : Field a => (mat : Matrix m n a) -> Maybe (DecompLU mat)
decompLU {m,n} mat with (viewShape mat)
_ | Shape [m,n] = map MkLU $ iterateN (minimum m n) (\i => (>>= gaussStepMaybe i)) (Just mat)
_ | Shape [m,n] = map (MkLU . convertRep _ @{getRepC mat})
$ iterateN (minimum m n) (\i => (>>= gaussStepMaybe i)) (Just (convertRep Delayed mat))
where
gaussStepMaybe : Fin (minimum m n) -> Matrix m n a -> Maybe (Matrix m n a)
gaussStepMaybe i mat = if mat!#[cast i,cast i] == 0 then Nothing
@ -417,7 +429,7 @@ namespace DecompLUP
export
lower : Num a => DecompLUP {m,n,a} mat -> Matrix m (minimum m n) a
lower {m,n} (MkLUP lu _ _) with (viewShape lu)
_ | Shape [m,n] = fromFunctionNB _ (\[i,j] =>
_ | Shape [m,n] = fromFunctionNB {rep=_} @{getRepC lu} _ (\[i,j] =>
case compare i j of
LT => 0
EQ => 1
@ -447,7 +459,7 @@ namespace DecompLUP
export
upper : Num a => DecompLUP {m,n,a} mat -> Matrix (minimum m n) n a
upper {m,n} (MkLUP lu _ _) with (viewShape lu)
_ | Shape [m,n] = fromFunctionNB _ (\[i,j] =>
_ | Shape [m,n] = fromFunctionNB {rep=_} @{getRepC lu} _ (\[i,j] =>
if i <= j then lu!#[i,j] else 0)
||| The upper triangular matrix U of the LUP decomposition.
@ -634,4 +646,3 @@ export
{n : _} -> FieldCmp a => MultGroup (Matrix' n a) where
inverse mat = let lup = decompLUP mat in
hstack $ map (solveWithLUP' mat lup . basis) range