Reorganize Data.NumIdr.Array.Coords

This commit is contained in:
Kiana Sheibani 2022-08-29 13:55:02 -04:00
parent 1d6b9d3be9
commit 9ece7e6963
Signed by: toki
GPG key ID: 6CB106C25E86A9F7

View file

@ -8,6 +8,23 @@ import Data.NP
%default total
-- A Nat-based range function with better semantics
public export
range : Nat -> Nat -> List Nat
range x y = if x < y then assert_total $ takeBefore (>= y) (countFrom x S)
else []
-- helpful theorems for working with ranges
export
rangeLen : (x,y : Nat) -> length (range x y) = minus y x
rangeLen x y = believe_me $ Refl {x = minus y x}
export
rangeLenZ : (x : Nat) -> length (range 0 x) = x
rangeLenZ x = rangeLen 0 x `trans` minusZeroRight x
--------------------------------------------------------------------------------
-- Array coordinate types
--------------------------------------------------------------------------------
@ -26,6 +43,44 @@ toNB [] = []
toNB (i :: is) = finToNat i :: toNB is
namespace Strict
public export
data CRange : Nat -> Type where
One : Fin n -> CRange n
All : CRange n
StartBound : Fin (S n) -> CRange n
EndBound : Fin (S n) -> CRange n
Bounds : Fin (S n) -> Fin (S n) -> CRange n
Indices : List (Fin n) -> CRange n
Filter : (Fin n -> Bool) -> CRange n
infix 0 ...
public export
(...) : Fin (S n) -> Fin (S n) -> CRange n
(...) = Bounds
public export
CoordsRange : (s : Vect rk Nat) -> Type
CoordsRange = NP CRange
namespace NB
public export
data CRangeNB : Type where
All : CRangeNB
StartBound : Nat -> CRangeNB
EndBound : Nat -> CRangeNB
Bounds : Nat -> Nat -> CRangeNB
Indices : List Nat -> CRangeNB
Filter : (Nat -> Bool) -> CRangeNB
--------------------------------------------------------------------------------
-- Indexing helper functions
--------------------------------------------------------------------------------
public export
Vects : Vect rk Nat -> Type -> Type
Vects [] a = a
@ -38,7 +93,7 @@ collapse {s=_::_} = concat . map collapse
export
mapWithIndex : {s : Vect rk Nat} -> (Vect rk Nat -> a -> b) -> Vects {rk} s a -> Vects s b
mapWithIndex : {s : Vect rk Nat} -> (Vect rk Nat -> a -> b) -> Vects s a -> Vects s b
mapWithIndex {s=[]} f x = f [] x
mapWithIndex {s=_::_} f v = mapWithIndex' (\i => mapWithIndex (\is => f (i::is))) v
where
@ -58,86 +113,73 @@ getLocation : Vect rk Nat -> Coords {rk} s -> Nat
getLocation sts is = getLocation' sts (toNB is)
--------------------------------------------------------------------------------
-- Array coordinate types
--------------------------------------------------------------------------------
namespace Strict
public export
cRangeToList : {n : Nat} -> CRange n -> Either Nat (List Nat)
cRangeToList (One x) = Left (cast x)
cRangeToList All = Right $ range 0 n
cRangeToList (StartBound x) = Right $ range (cast x) n
cRangeToList (EndBound x) = Right $ range 0 (cast x)
cRangeToList (Bounds x y) = Right $ range (cast x) (cast y)
cRangeToList (Indices xs) = Right $ map cast xs
cRangeToList (Filter p) = Right $ map cast $ filter p $ toList Fin.range
-- A Nat-based range function with better semantics
public export
range : Nat -> Nat -> List Nat
range x y = if x < y then assert_total $ takeBefore (>= y) (countFrom x S)
else []
public export
newRank : {s : _} -> CoordsRange s -> Nat
newRank [] = 0
newRank (r :: rs) = case cRangeToList r of
Left _ => newRank rs
Right _ => S (newRank rs)
-- helpful theorems for working with ranges
export
rangeLen : (x,y : Nat) -> length (range x y) = minus y x
rangeLen x y = believe_me $ Refl {x = minus y x}
export
rangeLenZ : (x : Nat) -> length (range 0 x) = x
rangeLenZ x = rangeLen 0 x `trans` minusZeroRight x
||| Calculate the new shape given by a coordinate range.
public export
newShape : {s : _} -> (rs : CoordsRange s) -> Vect (newRank rs) Nat
newShape [] = []
newShape (r :: rs) with (cRangeToList r)
newShape (r :: rs) | Left _ = newShape rs
newShape (r :: rs) | Right xs = length xs :: newShape rs
public export
data CRange : Nat -> Type where
One : Fin n -> CRange n
All : CRange n
StartBound : Fin (S n) -> CRange n
EndBound : Fin (S n) -> CRange n
Bounds : Fin (S n) -> Fin (S n) -> CRange n
Indices : List (Fin n) -> CRange n
Filter : (Fin n -> Bool) -> CRange n
getNewPos : {s : _} -> (rs : CoordsRange {rk} s) -> Vect rk Nat -> Vect (newRank rs) Nat
getNewPos [] [] = []
getNewPos (r :: rs) (i :: is) with (cRangeToList r)
_ | Left _ = getNewPos rs is
_ | Right xs = cast (assert_total $ case findIndex (==i) xs of Just x => x)
:: getNewPos rs is
infix 0 ...
public export
(...) : Fin (S n) -> Fin (S n) -> CRange n
(...) = Bounds
export
getCoordsList : {s : Vect rk Nat} -> (rs : CoordsRange s) -> List (Vect rk Nat, Vect (newRank rs) Nat)
getCoordsList rs = map (\is => (is, getNewPos rs is)) $ go rs
where
go : {0 rk : _} -> {s : Vect rk Nat} -> CoordsRange s -> List (Vect rk Nat)
go [] = [[]]
go (r :: rs) = [| (either pure id (cRangeToList r)) :: go rs |]
public export
CoordsRange : (s : Vect rk Nat) -> Type
CoordsRange = NP CRange
namespace NB
export
cRangeNBToList : Nat -> CRangeNB -> List Nat
cRangeNBToList s All = range 0 s
cRangeNBToList s (StartBound x) = range x s
cRangeNBToList s (EndBound x) = range 0 x
cRangeNBToList s (Bounds x y) = range x (minimum y s)
cRangeNBToList s (Indices xs) = filter (<s) xs
cRangeNBToList s (Filter p) = filter p $ range 0 s
public export
cRangeToList : {n : Nat} -> CRange n -> Either Nat (List Nat)
cRangeToList (One x) = Left (cast x)
cRangeToList All = Right $ range 0 n
cRangeToList (StartBound x) = Right $ range (cast x) n
cRangeToList (EndBound x) = Right $ range 0 (cast x)
cRangeToList (Bounds x y) = Right $ range (cast x) (cast y)
cRangeToList (Indices xs) = Right $ map cast xs
cRangeToList (Filter p) = Right $ map cast $ filter p $ toList Fin.range
export
newShape : Vect rk Nat -> Vect rk CRangeNB -> Vect rk Nat
newShape = zipWith (length .: cRangeNBToList)
export
getNewPos : Vect rk Nat -> Vect rk CRangeNB -> Vect rk Nat -> Vect rk Nat
getNewPos = zipWith3 (\d,r,i => assert_total $
case findIndex (==i) (cRangeNBToList d r) of Just x => cast x)
public export
newRank : {s : _} -> CoordsRange s -> Nat
newRank [] = 0
newRank (r :: rs) = case cRangeToList r of
Left _ => newRank rs
Right _ => S (newRank rs)
||| Calculate the new shape given by a coordinate range.
public export
newShape : {s : _} -> (rs : CoordsRange s) -> Vect (newRank rs) Nat
newShape [] = []
newShape (r :: rs) with (cRangeToList r)
newShape (r :: rs) | Left _ = newShape rs
newShape (r :: rs) | Right xs = length xs :: newShape rs
getNewPos : {s : _} -> (rs : CoordsRange {rk} s) -> Vect rk Nat -> Vect (newRank rs) Nat
getNewPos [] [] = []
getNewPos (r :: rs) (i :: is) with (cRangeToList r)
_ | Left _ = getNewPos rs is
_ | Right xs = cast (assert_total $ case findIndex (==i) xs of Just x => x)
:: getNewPos rs is
export
getCoordsList : {s : Vect rk Nat} -> (rs : CoordsRange s) -> List (Vect rk Nat, Vect (newRank rs) Nat)
getCoordsList rs = map (\is => (is, getNewPos rs is)) $ go rs
where
go : {0 rk : _} -> {s : Vect rk Nat} -> CoordsRange s -> List (Vect rk Nat)
go [] = pure []
go (r :: rs) = [| (either pure id (cRangeToList r)) :: go rs |]
export
getCoordsList : Vect rk Nat -> Vect rk CRangeNB -> List (Vect rk Nat, Vect rk Nat)
getCoordsList s rs = map (\is => (is, getNewPos s rs is)) $ go s rs
where
go : {0 rk : _} -> Vect rk Nat -> Vect rk CRangeNB -> List (Vect rk Nat)
go [] [] = [[]]
go (d :: s) (r :: rs) = [| cRangeNBToList d r :: go s rs |]