Add documentation
This commit is contained in:
parent
d610874abc
commit
98223b180f
|
@ -5,6 +5,7 @@ import Data.Vect
|
|||
%default total
|
||||
|
||||
|
||||
||| A type constructor for heterogenous lists.
|
||||
public export
|
||||
data NP : (f : k -> Type) -> (ts : Vect n k) -> Type where
|
||||
Nil : NP {k} f []
|
||||
|
|
|
@ -102,10 +102,13 @@ shapeEq : (arr : Array s a) -> s = shape arr
|
|||
shapeEq (MkArray _ _ _ _) = Refl
|
||||
|
||||
|
||||
||| A view for extracting the shape of an array.
|
||||
public export
|
||||
data ShapeView : Array s a -> Type where
|
||||
Shape : (s : Vect rk Nat) -> {0 arr : Array s a} -> ShapeView arr
|
||||
|
||||
||| The covering function for the view `ShapeView`. This function takes an array
|
||||
||| of type `Array s a` and returns `Shape s`.
|
||||
export
|
||||
viewShape : (arr : Array s a) -> ShapeView arr
|
||||
viewShape arr = rewrite shapeEq arr in
|
||||
|
@ -134,11 +137,16 @@ export
|
|||
repeat : (s : Vect rk Nat) -> a -> Array s a
|
||||
repeat s = repeat' s COrder
|
||||
|
||||
|
||||
||| Create an array filled with zeros.
|
||||
|||
|
||||
||| @ s The shape of the constructed array
|
||||
export
|
||||
zeros : Num a => (s : Vect rk Nat) -> Array s a
|
||||
zeros s = repeat s 0
|
||||
|
||||
||| Create an array filled with ones.
|
||||
|||
|
||||
||| @ s The shape of the constructed array
|
||||
export
|
||||
ones : Num a => (s : Vect rk Nat) -> Array s a
|
||||
ones s = repeat s 1
|
||||
|
@ -265,13 +273,13 @@ arr !! is = index is arr
|
|||
|
||||
-- TODO: Create set/update at index functions
|
||||
|
||||
||| Update the value at the given coordinates using the function.
|
||||
||| Update the entry at the given coordinates using the function.
|
||||
export
|
||||
indexUpdate : Coords s -> (a -> a) -> Array s a -> Array s a
|
||||
indexUpdate is f (MkArray ord sts s arr) =
|
||||
MkArray ord sts s (updateAt (getLocation sts is) f arr)
|
||||
|
||||
||| Set the value at the given coordinates to the given value.
|
||||
||| Set the entry at the given coordinates to the given value.
|
||||
export
|
||||
indexSet : Coords s -> a -> Array s a -> Array s a
|
||||
indexSet is = indexUpdate is . const
|
||||
|
@ -299,6 +307,7 @@ export %inline
|
|||
(!!..) : Array s a -> (rs : CoordsRange s) -> Array (newShape rs) a
|
||||
arr !!.. rs = indexRange rs arr
|
||||
|
||||
||| Set the sub-array at the given range of coordinates to the given array.
|
||||
export
|
||||
indexSetRange : (rs : CoordsRange s) -> Array (newShape rs) a ->
|
||||
Array s a -> Array s a
|
||||
|
@ -311,6 +320,8 @@ indexSetRange rs rpl (MkArray ord sts s arr) =
|
|||
pure arr')
|
||||
|
||||
|
||||
||| Update the sub-array at the given range of coordinates by applying
|
||||
||| a function to it.
|
||||
export
|
||||
indexUpdateRange : (rs : CoordsRange s) ->
|
||||
(Array (newShape rs) a -> Array (newShape rs) a) ->
|
||||
|
@ -334,20 +345,22 @@ export %inline
|
|||
(!?) : Array {rk} s a -> Vect rk Nat -> Maybe a
|
||||
arr !? is = indexNB is arr
|
||||
|
||||
||| Update the value at the given coordinates using the function. The array is
|
||||
||| Update the entry at the given coordinates using the function. The array is
|
||||
||| returned unchanged if the coordinate is out of bounds.
|
||||
export
|
||||
indexUpdateNB : Vect rk Nat -> (a -> a) -> Array {rk} s a -> Array s a
|
||||
indexUpdateNB is f (MkArray ord sts s arr) =
|
||||
MkArray ord sts s (updateAt (getLocation' sts is) f arr)
|
||||
|
||||
||| Set the value at the given coordinates to the given value. The array is
|
||||
||| Set the entry at the given coordinates to the given value. The array is
|
||||
||| returned unchanged if the coordinate is out of bounds.
|
||||
export
|
||||
indexSetNB : Vect rk Nat -> a -> Array {rk} s a -> Array s a
|
||||
indexSetNB is = indexUpdateNB is . const
|
||||
|
||||
|
||||
||| Index the array using the given range of coordinates, returning a new array.
|
||||
||| Entries outside of the array's bounds are not included.
|
||||
export
|
||||
indexRangeNB : (rs : Vect rk CRangeNB) -> Array s a -> Array (newShape s rs) a
|
||||
indexRangeNB {s} rs arr with (viewShape arr)
|
||||
|
@ -362,15 +375,27 @@ indexRangeNB {s} rs arr with (viewShape arr)
|
|||
where s' : Vect ? Nat
|
||||
s' = newShape s rs
|
||||
|
||||
||| Index the array using the given range of coordinates, returning a new array.
|
||||
||| Entries outside of the array's bounds are not included.
|
||||
|||
|
||||
||| This is the operator form of `indexRangeNB`.
|
||||
export %inline
|
||||
(!?..) : Array s a -> (rs : Vect rk CRangeNB) -> Array (newShape s rs) a
|
||||
arr !?.. rs = indexRangeNB rs arr
|
||||
|
||||
|
||||
||| Index the array using the given coordinates.
|
||||
||| WARNING: This function does not perform any bounds check on its inputs.
|
||||
||| Misuse of this function can easily break memory safety.
|
||||
export
|
||||
indexUnsafe : Vect rk Nat -> Array {rk} s a -> a
|
||||
indexUnsafe is arr = index (getLocation' (strides arr) is) (getPrim arr)
|
||||
|
||||
||| Index the array using the given coordinates.
|
||||
||| WARNING: This function does not perform any bounds check on its inputs.
|
||||
||| Misuse of this function can easily break memory safety.
|
||||
|||
|
||||
||| This is the operator form of `indexUnsafe`.
|
||||
export %inline
|
||||
(!#) : Array {rk} s a -> Vect rk Nat -> a
|
||||
arr !# is = indexUnsafe is arr
|
||||
|
@ -455,7 +480,8 @@ enumerate {s} arr with (viewShape arr)
|
|||
|
||||
|
||||
||| Join two arrays along a particular axis, e.g. combining two matrices
|
||||
||| vertically or horizontally. The arrays must have the same shape on all other axes.
|
||||
||| vertically or horizontally. All other axes of the arrays must have the
|
||||
||| same dimensions.
|
||||
|||
|
||||
||| @ axis The axis to join the arrays on
|
||||
export
|
||||
|
@ -485,35 +511,51 @@ stack axis arrs = rewrite sym (lengthCorrect arrs) in
|
|||
getAxisInd FZ (i :: is) = (i, is)
|
||||
getAxisInd {s=_::_} (FS ax) (i :: is) = mapSnd (i::) (getAxisInd ax is)
|
||||
|
||||
|
||||
||| Construct the transpose of an array by reversing the order of its axes.
|
||||
export
|
||||
transpose : Array s a -> Array (reverse s) a
|
||||
transpose {s} arr with (viewShape arr)
|
||||
_ | Shape s = fromFunctionNB (reverse s) (\is => arr !# reverse is)
|
||||
|
||||
||| Construct the transpose of an array by reversing the order of its axes.
|
||||
|||
|
||||
||| This is the postfix form of `transpose`.
|
||||
export
|
||||
(.T) : Array s a -> Array (reverse s) a
|
||||
(.T) = transpose
|
||||
|
||||
|
||||
||| Swap two axes in an array.
|
||||
export
|
||||
swapAxes : (i,j : Fin rk) -> Array s a -> Array (swapElems i j s) a
|
||||
swapAxes {s} i j arr with (viewShape arr)
|
||||
_ | Shape s = fromFunctionNB _ (\is => arr !# swapElems i j is)
|
||||
|
||||
||| Apply a permutation to the axes of an array.
|
||||
export
|
||||
permuteAxes : (p : Permutation rk) -> Array s a -> Array (permuteVect p s) a
|
||||
permuteAxes {s} p arr with (viewShape arr)
|
||||
_ | Shape s = fromFunctionNB _ (\is => arr !# permuteVect p s)
|
||||
|
||||
||| Swap two coordinates along a specific axis (e.g. swapping two rows in a matrix).
|
||||
|||
|
||||
||| @ axis The axis to swap the coordinates along. Slices of the array
|
||||
||| perpendicular to this axis are taken when swapping.
|
||||
export
|
||||
swapInAxis : (ax : Fin rk) -> (i,j : Fin (index ax s)) -> Array s a -> Array s a
|
||||
swapInAxis {s} ax i j arr with (viewShape arr)
|
||||
_ | Shape s = fromFunctionNB _ (\is => arr !# updateAt ax (swapValues i j) is)
|
||||
swapInAxis : (axis : Fin rk) -> (i,j : Fin (index axis s)) -> Array s a -> Array s a
|
||||
swapInAxis {s} axis i j arr with (viewShape arr)
|
||||
_ | Shape s = fromFunctionNB _ (\is => arr !# updateAt axis (swapValues i j) is)
|
||||
|
||||
||| Permute the coordinates along a specific axis (e.g. permuting the rows in
|
||||
||| a matrix).
|
||||
|||
|
||||
||| @ axis The axis to permute the coordinates along. Slices of the array
|
||||
||| perpendicular to this axis are taken when permuting.
|
||||
export
|
||||
permuteInAxis : (ax : Fin rk) -> Permutation (index ax s) -> Array s a -> Array s a
|
||||
permuteInAxis {s} ax p arr with (viewShape arr)
|
||||
_ | Shape s = fromFunctionNB _ (\is => arr !# updateAt ax (permuteValues p) is)
|
||||
permuteInAxis : (axis : Fin rk) -> Permutation (index axis s) -> Array s a -> Array s a
|
||||
permuteInAxis {s} axis p arr with (viewShape arr)
|
||||
_ | Shape s = fromFunctionNB _ (\is => arr !# updateAt axis (permuteValues p) is)
|
||||
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
|
|
@ -167,6 +167,7 @@ namespace NB
|
|||
cRangeNBToList s (Indices xs) = filter (<s) xs
|
||||
cRangeNBToList s (Filter p) = filter p $ range 0 s
|
||||
|
||||
||| Calculate the new shape given by a coordinate range.
|
||||
export
|
||||
newShape : Vect rk Nat -> Vect rk CRangeNB -> Vect rk Nat
|
||||
newShape = zipWith (length .: cRangeNBToList)
|
||||
|
|
|
@ -8,19 +8,27 @@ module Data.NumIdr.Interfaces
|
|||
--------------------------------------------------------------------------------
|
||||
|
||||
|
||||
||| An interface synonym for types which form a field, such as `Double`.
|
||||
public export
|
||||
Field : Type -> Type
|
||||
Field a = (Eq a, Neg a, Fractional a)
|
||||
|
||||
|
||||
||| An interface for number types which allow for LUP decomposition to be performed.
|
||||
|||
|
||||
||| The function `abslt` is required for the internal decomposition algorithm.
|
||||
||| An instance of this interface must satisfy:
|
||||
||| * The relation `abslt` is a preorder.
|
||||
||| * `0` is a minimum of `abslt`.
|
||||
public export
|
||||
interface (Eq a, Neg a, Fractional a) => FieldCmp a where
|
||||
abscmp : a -> a -> Ordering
|
||||
||| Compare the absolute values of two inputs.
|
||||
abslt : a -> a -> Bool
|
||||
|
||||
|
||||
export
|
||||
(Ord a, Abs a, Neg a, Fractional a) => FieldCmp a where
|
||||
abscmp x y = compare (abs x) (abs y)
|
||||
abslt x y = abs x < abs y
|
||||
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
@ -38,8 +46,11 @@ infixr 10 ^
|
|||
||| * If `x *. (y *. z)` is defined, then `(x *. y) *. z` is defined and equal.
|
||||
public export
|
||||
interface Mult a b c | a,b where
|
||||
||| A generalized multiplication/application operator for matrices and
|
||||
||| vector transformations.
|
||||
(*.) : a -> b -> c
|
||||
|
||||
||| A synonym for `Mult a a a`, or homogenous multiplication.
|
||||
public export
|
||||
Mult' : Type -> Type
|
||||
Mult' a = Mult a a a
|
||||
|
@ -52,6 +63,10 @@ Mult' a = Mult a a a
|
|||
||| * `identity *. x == x`
|
||||
public export
|
||||
interface Mult' a => MultMonoid a where
|
||||
||| Construct an identity matrix or transformation.
|
||||
|||
|
||||
||| NOTE: Creating an identity element for an `n`-dimensional transformation
|
||||
||| usually requires `n` to be available at runtime.
|
||||
identity : a
|
||||
|
||||
||| An interface for groups using the `*.` operator.
|
||||
|
@ -61,6 +76,10 @@ interface Mult' a => MultMonoid a where
|
|||
||| * `inverse x *. x == identity`
|
||||
public export
|
||||
interface MultMonoid a => MultGroup a where
|
||||
||| Calculate the inverse of the matrix or transformation.
|
||||
||| WARNING: This function will not check if an inverse exists for the given
|
||||
||| input, and will happily return results containing NaN values. To avoid
|
||||
||| this, use `tryInverse` instead.
|
||||
inverse : a -> a
|
||||
|
||||
|
||||
|
|
|
@ -61,9 +61,10 @@ fromDiag ds o = fromFunction [m,n] (\[i,j] => maybe o (`index` ds) $ i `eq` j)
|
|||
eq (FS _) FZ = Nothing
|
||||
|
||||
|
||||
||| Construct a permutation matrix based on the given permutation.
|
||||
export
|
||||
permutationMatrix : {n : _} -> Num a => Permutation n -> Matrix' n a
|
||||
permutationMatrix p = permuteInAxis 0 p (repeatDiag 1 0)
|
||||
permuteM : {n : _} -> Num a => Permutation n -> Matrix' n a
|
||||
permuteM p = permuteInAxis 0 p (repeatDiag 1 0)
|
||||
|
||||
|
||||
||| Construct the matrix that scales a vector by the given value.
|
||||
|
@ -105,19 +106,23 @@ getColumn : Fin n -> Matrix m n a -> Vector m a
|
|||
getColumn c mat = rewrite sym (rangeLenZ m) in mat!!..[All, One c]
|
||||
|
||||
|
||||
||| Return the diagonal elements of the matrix as a vector.
|
||||
export
|
||||
diagonal' : Matrix m n a -> Vector (minimum m n) a
|
||||
diagonal' {m,n} mat with (viewShape mat)
|
||||
_ | Shape [m,n] = fromFunctionNB _ (\[i] => mat!#[i,i])
|
||||
|
||||
||| Return the diagonal elements of the matrix as a vector.
|
||||
export
|
||||
diagonal : Matrix' n a -> Vector n a
|
||||
diagonal {n} mat with (viewShape mat)
|
||||
_ | Shape [n,n] = fromFunctionNB [n] (\[i] => mat!#[i,i])
|
||||
|
||||
|
||||
-- TODO: throw an actual proof in here to avoid the unsafety
|
||||
||| Return a minor of the matrix, i.e. the matrix formed by removing a
|
||||
||| single row and column.
|
||||
export
|
||||
-- TODO: throw an actual proof in here to avoid the unsafety
|
||||
minor : Fin (S m) -> Fin (S n) -> Matrix (S m) (S n) a -> Matrix m n a
|
||||
minor i j mat = believe_me $ mat!!..[Filter (/=i), Filter (/=j)]
|
||||
|
||||
|
@ -157,28 +162,33 @@ export
|
|||
hconcat : Matrix m n a -> Matrix m n' a -> Matrix m (n + n') a
|
||||
hconcat = concat 1
|
||||
|
||||
|
||||
||| Stack row vectors to form a matrix.
|
||||
export
|
||||
vstack : {n : _} -> Vect m (Vector n a) -> Matrix m n a
|
||||
vstack = stack 0
|
||||
|
||||
||| Stack column vectors to form a matrix.
|
||||
export
|
||||
hstack : {m : _} -> Vect n (Vector m a) -> Matrix m n a
|
||||
hstack = stack 1
|
||||
|
||||
|
||||
||| Swap two rows of a matrix.
|
||||
export
|
||||
swapRows : (i,j : Fin m) -> Matrix m n a -> Matrix m n a
|
||||
swapRows = swapInAxis 0
|
||||
|
||||
||| Swap two columns of a matrix.
|
||||
export
|
||||
swapColumns : (i,j : Fin n) -> Matrix m n a -> Matrix m n a
|
||||
swapColumns = swapInAxis 1
|
||||
|
||||
||| Permute the rows of a matrix.
|
||||
export
|
||||
permuteRows : Permutation m -> Matrix m n a -> Matrix m n a
|
||||
permuteRows = permuteInAxis 0
|
||||
|
||||
||| Permute the columns of a matrix.
|
||||
export
|
||||
permuteColumns : Permutation n -> Matrix m n a -> Matrix m n a
|
||||
permuteColumns = permuteInAxis 1
|
||||
|
@ -191,6 +201,7 @@ outer {m,n} a b with (viewShape a, viewShape b)
|
|||
_ | (Shape [m], Shape [n]) = fromFunction [m,n] (\[i,j] => a!!i * b!!j)
|
||||
|
||||
|
||||
||| Calculate the trace of a matrix, i.e. the sum of its diagonal elements.
|
||||
export
|
||||
trace : Num a => Matrix m n a -> a
|
||||
trace = sum . diagonal'
|
||||
|
@ -223,14 +234,20 @@ export
|
|||
--------------------------------------------------------------------------------
|
||||
|
||||
|
||||
-- LU Decomposition
|
||||
||| The LU decomposition of a matrix.
|
||||
|||
|
||||
||| LU decomposition factors a matrix A into two matrices: a lower triangular
|
||||
||| matrix L, and an upper triangular matrix U, such that A = LU.
|
||||
export
|
||||
record DecompLU {0 m,n,a : _} (mat : Matrix m n a) where
|
||||
constructor MkLU
|
||||
-- The lower and upper triangular matrix elements are stored
|
||||
-- together for efficiency reasons
|
||||
lu : Matrix m n a
|
||||
|
||||
|
||||
namespace DecompLU
|
||||
||| The lower triangular matrix L of the LU decomposition.
|
||||
export
|
||||
lower : Num a => DecompLU {m,n,a} mat -> Matrix m (minimum m n) a
|
||||
lower {m,n} (MkLU lu) with (viewShape lu)
|
||||
|
@ -240,34 +257,49 @@ namespace DecompLU
|
|||
EQ => 1
|
||||
GT => lu!#[i,j])
|
||||
|
||||
||| The lower triangular matrix L of the LU decomposition.
|
||||
export %inline
|
||||
(.lower) : Num a => DecompLU {m,n,a} mat -> Matrix m (minimum m n) a
|
||||
(.lower) = lower
|
||||
|
||||
||| The lower triangular matrix L of the LU decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export
|
||||
lower' : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
lower' lu = rewrite cong (\i => Matrix n i a) $ sym (minimumIdempotent n)
|
||||
in lower lu
|
||||
|
||||
||| The lower triangular matrix L of the LU decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export %inline
|
||||
(.lower') : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
(.lower') = lower'
|
||||
|
||||
||| The upper triangular matrix U of the LU decomposition.
|
||||
export
|
||||
upper : Num a => DecompLU {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
upper {m,n} (MkLU lu) with (viewShape lu)
|
||||
_ | Shape [m,n] = fromFunctionNB _ (\[i,j] =>
|
||||
if i <= j then lu!#[i,j] else 0)
|
||||
|
||||
||| The upper triangular matrix U of the LU decomposition.
|
||||
export %inline
|
||||
(.upper) : Num a => DecompLU {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
(.upper) = upper
|
||||
|
||||
||| The upper triangular matrix U of the LU decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export
|
||||
upper' : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
upper' lu = rewrite cong (\i => Matrix i n a) $ sym (minimumIdempotent n)
|
||||
in upper lu
|
||||
|
||||
||| The upper triangular matrix U of the LU decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export %inline
|
||||
(.upper') : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
(.upper') = upper'
|
||||
|
@ -296,6 +328,7 @@ iterateN 1 f x = f FZ x
|
|||
iterateN (S n@(S _)) f x = iterateN n (f . FS) $ f FZ x
|
||||
|
||||
|
||||
||| Perform a single step of Gaussian elimination on the `i`-th row and column.
|
||||
gaussStep : {m,n : _} -> Field a =>
|
||||
Fin (minimum m n) -> Matrix m n a -> Matrix m n a
|
||||
gaussStep i lu =
|
||||
|
@ -304,13 +337,14 @@ gaussStep i lu =
|
|||
ic = minWeakenRight i
|
||||
diag = lu!![ir,ic]
|
||||
coeffs = map (/diag) $ lu!!..[StartBound (FS ir), One ic]
|
||||
lu' = indexSetRange [StartBound (FS ir), One ic]
|
||||
coeffs lu
|
||||
lu' = indexSetRange [StartBound (FS ir), One ic] coeffs lu
|
||||
pivot = lu!!..[One ir, StartBound (FS ic)]
|
||||
offsets = outer coeffs pivot
|
||||
in indexUpdateRange [StartBound (FS ir), StartBound (FS ic)]
|
||||
(flip (-) offsets) lu'
|
||||
|
||||
||| Calculate the LU decomposition of a matrix, returning `Nothing` if one
|
||||
||| does not exist.
|
||||
export
|
||||
decompLU : Field a => (mat : Matrix m n a) -> Maybe (DecompLU mat)
|
||||
decompLU {m,n} mat with (viewShape mat)
|
||||
|
@ -321,7 +355,12 @@ decompLU {m,n} mat with (viewShape mat)
|
|||
else Just (gaussStep i mat)
|
||||
|
||||
|
||||
-- LUP Decomposition
|
||||
||| The LUP decomposition of a matrix.
|
||||
|||
|
||||
||| LUP decomposition is similar to LU decomposition, but the matrix may have
|
||||
||| its rows permuted before being factored. More formally, an LUP decomposition
|
||||
||| of a matrix A consists of a lower triangular matrix L, an upper triangular
|
||||
||| matrix U, and a permutation matrix P, such that PA = LU.
|
||||
export
|
||||
record DecompLUP {0 m,n,a : _} (mat : Matrix m n a) where
|
||||
constructor MkLUP
|
||||
|
@ -330,6 +369,7 @@ record DecompLUP {0 m,n,a : _} (mat : Matrix m n a) where
|
|||
sw : Nat
|
||||
|
||||
namespace DecompLUP
|
||||
||| The lower triangular matrix L of the LUP decomposition.
|
||||
export
|
||||
lower : Num a => DecompLUP {m,n,a} mat -> Matrix m (minimum m n) a
|
||||
lower {m,n} (MkLUP lu _ _) with (viewShape lu)
|
||||
|
@ -339,55 +379,78 @@ namespace DecompLUP
|
|||
EQ => 1
|
||||
GT => lu!#[i,j])
|
||||
|
||||
||| The lower triangular matrix L of the LUP decomposition.
|
||||
export %inline
|
||||
(.lower) : Num a => DecompLUP {m,n,a} mat -> Matrix m (minimum m n) a
|
||||
(.lower) = lower
|
||||
|
||||
||| The lower triangular matrix L of the LUP decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export
|
||||
lower' : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
lower' lu = rewrite cong (\i => Matrix n i a) $ sym (minimumIdempotent n)
|
||||
in lower lu
|
||||
|
||||
||| The lower triangular matrix L of the LUP decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export %inline
|
||||
(.lower') : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
(.lower') = lower'
|
||||
|
||||
||| The upper triangular matrix U of the LUP decomposition.
|
||||
export
|
||||
upper : Num a => DecompLUP {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
upper {m,n} (MkLUP lu _ _) with (viewShape lu)
|
||||
_ | Shape [m,n] = fromFunctionNB _ (\[i,j] =>
|
||||
if i <= j then lu!#[i,j] else 0)
|
||||
|
||||
||| The upper triangular matrix U of the LUP decomposition.
|
||||
export %inline
|
||||
(.upper) : Num a => DecompLUP {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
(.upper) = upper
|
||||
|
||||
||| The upper triangular matrix U of the LUP decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export
|
||||
upper' : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
upper' lu = rewrite cong (\i => Matrix i n a) $ sym (minimumIdempotent n)
|
||||
in upper lu
|
||||
|
||||
||| The upper triangular matrix U of the LUP decomposition.
|
||||
|||
|
||||
||| This accessor is intended to be used for square matrix decompositions.
|
||||
export %inline
|
||||
(.upper') : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
(.upper') = upper'
|
||||
|
||||
||| The row permutation of the LUP decomposition.
|
||||
export
|
||||
permute : DecompLUP {m} mat -> Permutation m
|
||||
permute (MkLUP lu p sw) = p
|
||||
|
||||
||| The row permutation of the LUP decomposition.
|
||||
export %inline
|
||||
(.permute) : DecompLUP {m} mat -> Permutation m
|
||||
(.permute) = permute
|
||||
|
||||
||| The number of swaps in the permutation of the LUP decomposition.
|
||||
|||
|
||||
||| This is stored along with the permutation in order to increase the
|
||||
||| efficiency of certain algorithms.
|
||||
export
|
||||
numSwaps : DecompLUP mat -> Nat
|
||||
numSwaps (MkLUP lu p sw) = sw
|
||||
|
||||
|
||||
||| Convert an LU decomposition into an LUP decomposition.
|
||||
export
|
||||
fromLU : DecompLU mat -> DecompLUP mat
|
||||
fromLU (MkLU lu) = MkLUP lu identity 0
|
||||
|
||||
|
||||
||| Calculate the LUP decomposition of a matrix.
|
||||
export
|
||||
decompLUP : FieldCmp a => (mat : Matrix m n a) -> DecompLUP mat
|
||||
decompLUP {m,n} mat with (viewShape mat)
|
||||
|
@ -400,7 +463,7 @@ decompLUP {m,n} mat with (viewShape mat)
|
|||
maxIndex x [] = x
|
||||
maxIndex _ [x] = x
|
||||
maxIndex x ((a,b)::(c,d)::xs) =
|
||||
if abscmp b d == LT then assert_total $ maxIndex x ((c,d)::xs)
|
||||
if abslt b d then assert_total $ maxIndex x ((c,d)::xs)
|
||||
else assert_total $ maxIndex x ((a,b)::xs)
|
||||
|
||||
gaussStepSwap : Fin (S $ minimum m n) -> DecompLUP mat -> DecompLUP mat
|
||||
|
@ -418,12 +481,14 @@ decompLUP {m,n} mat with (viewShape mat)
|
|||
--------------------------------------------------------------------------------
|
||||
|
||||
|
||||
||| Calculate the determinant of a matrix given its LUP decomposition.
|
||||
export
|
||||
detWithLUP : Num a => (mat : Matrix' n a) -> DecompLUP mat -> a
|
||||
detWithLUP mat lup =
|
||||
(if numSwaps lup `mod` 2 == 0 then 1 else -1)
|
||||
* product (diagonal lup.lu)
|
||||
|
||||
||| Calculate the determinant of a matrix.
|
||||
export
|
||||
det : FieldCmp a => Matrix' n a -> a
|
||||
det {n} mat with (viewShape mat)
|
||||
|
@ -464,12 +529,16 @@ solveUpperTri' {n} mat b with (viewShape b)
|
|||
mat !!.. [One i', StartBound (FS i')]))) / mat!#[i,i] :: xs
|
||||
|
||||
|
||||
||| Solve a linear equation, assuming the matrix is lower triangular.
|
||||
||| Any entries other than those below the diagonal are ignored.
|
||||
export
|
||||
solveLowerTri : Field a => Matrix' n a -> Vector n a -> Maybe (Vector n a)
|
||||
solveLowerTri mat b = if all (/=0) (diagonal mat)
|
||||
then Just $ solveLowerTri' mat b
|
||||
else Nothing
|
||||
|
||||
||| Solve a linear equation, assuming the matrix is upper triangular.
|
||||
||| Any entries other than those above the diagonal are ignored.
|
||||
export
|
||||
solveUpperTri : Field a => Matrix' n a -> Vector n a -> Maybe (Vector n a)
|
||||
solveUpperTri mat b = if all (/=0) (diagonal mat)
|
||||
|
@ -483,19 +552,27 @@ solveWithLUP' mat lup b =
|
|||
let b' = permuteCoords (inverse lup.permute) b
|
||||
in solveUpperTri' lup.upper' $ solveLowerTri' lup.lower' b'
|
||||
|
||||
||| Solve a linear equation, given a matrix and its LUP decomposition.
|
||||
export
|
||||
solveWithLUP : Field a => (mat : Matrix' n a) -> DecompLUP mat ->
|
||||
Vector n a -> Maybe (Vector n a)
|
||||
solveWithLUP mat lup b =
|
||||
let b' = permuteCoords (inverse lup.permute) b
|
||||
in solveLowerTri lup.lower' b' >>= solveUpperTri lup.upper'
|
||||
|
||||
in solveUpperTri lup.upper' $ solveLowerTri' lup.lower' b'
|
||||
|
||||
||| Solve a linear equation given a matrix.
|
||||
export
|
||||
solve : FieldCmp a => Matrix' n a -> Vector n a -> Maybe (Vector n a)
|
||||
solve mat = solveWithLUP mat (decompLUP mat)
|
||||
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Matrix inversion
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
|
||||
||| Try to invert a square matrix, returning `Nothing` if an inverse
|
||||
||| does not exist.
|
||||
export
|
||||
tryInverse : FieldCmp a => Matrix' n a -> Maybe (Matrix' n a)
|
||||
tryInverse {n} mat with (viewShape mat)
|
||||
|
|
|
@ -14,7 +14,7 @@ Vector : Nat -> Type -> Type
|
|||
Vector n = Array [n]
|
||||
|
||||
|
||||
||| The length (number of dimensions) of the vector
|
||||
||| The length (number of dimensions) of the vector.
|
||||
public export
|
||||
dim : Vector n a -> Nat
|
||||
dim = head . shape
|
||||
|
@ -131,10 +131,12 @@ swizzle p v = rewrite sym (lengthCorrect p)
|
|||
)
|
||||
|
||||
|
||||
||| Swap two entries in a vector.
|
||||
export
|
||||
swapCoords : (i,j : Fin n) -> Vector n a -> Vector n a
|
||||
swapCoords = swapInAxis 0
|
||||
|
||||
||| Permute the entries in a vector.
|
||||
export
|
||||
permuteCoords : Permutation n -> Vector n a -> Vector n a
|
||||
permuteCoords = permuteInAxis 0
|
||||
|
|
Loading…
Reference in a new issue