Rename MultNeutral to MultGroup

This commit is contained in:
Kiana Sheibani 2022-07-05 20:00:52 -04:00
parent 97bd20d722
commit 6cdb22a6ed
Signed by: toki
GPG key ID: 6CB106C25E86A9F7
3 changed files with 25 additions and 21 deletions

View file

@ -99,11 +99,11 @@ getTranslationVector mat with (viewShape mat)
export
scalingH : Num a => {n : _} -> a -> HMatrix' n a
scalingH : {n : _} -> Num a => a -> HMatrix' n a
scalingH x = indexSet [last,last] 1 $ repeatDiag x 0
export
translationH : Num a => {n : _} -> Vector n a -> HMatrix' n a
translationH : {n : _} -> Num a => Vector n a -> HMatrix' n a
translationH = hmatrix identity
export

View file

@ -59,15 +59,9 @@ fromDiag ds o = fromFunction [m,n] (\[i,j] => maybe o (`index` ds) $ i `eq` j)
eq (FS _) FZ = Nothing
||| The `n`-dimensional identity matrix.
export
identity : Num a => {n : _} -> Matrix' n a
identity = repeatDiag 1 0
||| Construct the matrix that scales a vector by the given value.
export
scaling : Num a => {n : _} -> a -> Matrix' n a
scaling : {n : _} -> Num a => a -> Matrix' n a
scaling x = repeatDiag x 0
||| Calculate the rotation matrix of an angle.
@ -157,5 +151,7 @@ Num a => Mult (Matrix m n a) (Matrix n p a) (Matrix m p a) where
(\k => m1 !! [i,k] * m2 !! [k,j]) range)
export
{n : _} -> Num a => MultNeutral (Matrix' n a) where
neutral = identity
{n : _} -> Num a => MultGroup (Matrix' n a) where
identity = repeatDiag 1 0
inverse = ?matrixInverse

View file

@ -16,32 +16,40 @@ public export
interface Mult a b c | a,b where
(*.) : a -> b -> c
||| An interface for monoids using the `*.` operator.
public export
Mult' : Type -> Type
Mult' a = Mult a a a
||| An interface for groups using the `*.` operator.
|||
||| An instance of this interface must satisfy:
||| * `x *. neutral == x`
||| * `neutral *. x == x`
||| * `x *. inverse x == neutral`
||| * `inverse x *. x == neutral`
public export
interface Mult a a a => MultNeutral a where
neutral : a
interface Mult' a => MultGroup a where
identity : a
inverse : a -> a
||| Multiplication forms a semigroup
public export
[MultSemigroup] Mult a a a => Semigroup a where
[MultSemigroup] Mult' a => Semigroup a where
(<+>) = (*.)
||| Multiplication with a neutral element forms a monoid
||| Multiplication with an identity element forms a monoid
public export
[MultMonoid] MultNeutral a => Monoid a using MultSemigroup where
neutral = Multiply.neutral
[MultMonoid] MultGroup a => Monoid a using MultSemigroup where
neutral = identity
||| Raise a multiplicative value (e.g. a matrix or a transformation) to a natural
||| number power.
public export
power : MultNeutral a => Nat -> a -> a
power 0 _ = neutral
power : MultGroup a => Nat -> a -> a
power 0 _ = identity
power 1 x = x
power (S n@(S _)) x = x *. power n x
@ -50,5 +58,5 @@ power (S n@(S _)) x = x *. power n x
|||
||| This is the operator form of `power`.
public export
(^) : MultNeutral a => a -> Nat -> a
(^) : MultGroup a => a -> Nat -> a
(^) = flip power