Add documentation
This commit is contained in:
parent
11d771b926
commit
59af31cdd7
10 changed files with 188 additions and 37 deletions
|
|
@ -6,32 +6,49 @@ module Data.NumIdr.Multiply
|
|||
infixr 9 *.
|
||||
infixr 10 ^
|
||||
|
||||
||| A generalized multiplication/transformation operator. This interface is
|
||||
||| A generalized multiplication/application operator. This interface is
|
||||
||| necessary since the standard multiplication operator is homogenous.
|
||||
|||
|
||||
||| All instances of this interface must collectively satisfy these axioms:
|
||||
||| * If `(x *. y) *. z` is defined, then `x *. (y *. z)` is defined and equal.
|
||||
||| * If `x *. (y *. z)` is defined, then `(x *. y) *. z` is defined and equal.
|
||||
public export
|
||||
interface Mult a b c | a,b where
|
||||
(*.) : a -> b -> c
|
||||
|
||||
||| An interface for monoids using the `*.` operator.
|
||||
|||
|
||||
||| An instance of this interface must satisfy:
|
||||
||| * `x *. neutral == x`
|
||||
||| * `neutral *. x == x`
|
||||
public export
|
||||
interface (Mult a a a) => MultNeutral a where
|
||||
interface Mult a a a => MultNeutral a where
|
||||
neutral : a
|
||||
|
||||
|
||||
||| Multiplication forms a semigroup
|
||||
public export
|
||||
[MultSemigroup] Mult a a a => Semigroup a where
|
||||
(<+>) = (*.)
|
||||
|
||||
||| Multiplication with a neutral element forms a monoid
|
||||
public export
|
||||
[MultMonoid] MultNeutral a => Monoid a using MultSemigroup where
|
||||
neutral = Multiply.neutral
|
||||
|
||||
|
||||
||| Raise a multiplicative value (e.g. a matrix or a transformation) to a natural
|
||||
||| number power.
|
||||
public export
|
||||
power : MultNeutral a => Nat -> a -> a
|
||||
power 0 _ = neutral
|
||||
power 1 x = x
|
||||
power (S n@(S _)) x = x *. power n x
|
||||
|
||||
||| Raise a multiplicative value (e.g. a matrix or a transformation) to a natural
|
||||
||| number power.
|
||||
|||
|
||||
||| This is the operator form of `power`.
|
||||
public export
|
||||
(^) : MultNeutral a => a -> Nat -> a
|
||||
(^) = flip power
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue