Create Field and Scalar interfaces
This commit is contained in:
parent
47e889992d
commit
3e12505377
8 changed files with 56 additions and 19 deletions
|
|
@ -1,70 +0,0 @@
|
|||
module Data.NumIdr.Multiply
|
||||
|
||||
%default total
|
||||
|
||||
|
||||
infixr 9 *.
|
||||
infixr 10 ^
|
||||
|
||||
||| A generalized multiplication/application operator. This interface is
|
||||
||| necessary since the standard multiplication operator is homogenous.
|
||||
|||
|
||||
||| All instances of this interface must collectively satisfy these axioms:
|
||||
||| * If `(x *. y) *. z` is defined, then `x *. (y *. z)` is defined and equal.
|
||||
||| * If `x *. (y *. z)` is defined, then `(x *. y) *. z` is defined and equal.
|
||||
public export
|
||||
interface Mult a b c | a,b where
|
||||
(*.) : a -> b -> c
|
||||
|
||||
public export
|
||||
Mult' : Type -> Type
|
||||
Mult' a = Mult a a a
|
||||
|
||||
|
||||
||| An interface for monoids using the `*.` operator.
|
||||
|||
|
||||
||| An instance of this interface must satisfy:
|
||||
||| * `x *. identity == x`
|
||||
||| * `identity *. x == x`
|
||||
public export
|
||||
interface Mult' a => MultMonoid a where
|
||||
identity : a
|
||||
|
||||
||| An interface for groups using the `*.` operator.
|
||||
|||
|
||||
||| An instance of this interface must satisfy:
|
||||
||| * `x *. inverse x == identity`
|
||||
||| * `inverse x *. x == identity`
|
||||
public export
|
||||
interface MultMonoid a => MultGroup a where
|
||||
inverse : a -> a
|
||||
|
||||
|
||||
namespace Semigroup
|
||||
||| Multiplication forms a semigroup
|
||||
public export
|
||||
[Mult] Mult' a => Semigroup a where
|
||||
(<+>) = (*.)
|
||||
|
||||
namespace Monoid
|
||||
||| Multiplication with an identity element forms a monoid
|
||||
public export
|
||||
[Mult] MultMonoid a => Monoid a using Semigroup.Mult where
|
||||
neutral = identity
|
||||
|
||||
|
||||
||| Raise a multiplicative value (e.g. a matrix or a transformation) to a natural
|
||||
||| number power.
|
||||
public export
|
||||
power : MultMonoid a => Nat -> a -> a
|
||||
power 0 _ = identity
|
||||
power 1 x = x
|
||||
power (S n@(S _)) x = x *. power n x
|
||||
|
||||
||| Raise a multiplicative value (e.g. a matrix or a transformation) to a natural
|
||||
||| number power.
|
||||
|||
|
||||
||| This is the operator form of `power`.
|
||||
public export %inline
|
||||
(^) : MultMonoid a => a -> Nat -> a
|
||||
a ^ n = power n a
|
||||
Loading…
Add table
Add a link
Reference in a new issue