Implement linear equation solving using LUP
This commit is contained in:
parent
3e12505377
commit
1f2a870a2c
|
@ -244,6 +244,15 @@ namespace DecompLU
|
|||
(.lower) : Num a => DecompLU {m,n,a} mat -> Matrix m (minimum m n) a
|
||||
(.lower) = lower
|
||||
|
||||
export
|
||||
lower' : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
lower' lu = rewrite cong (\i => Matrix n i a) $ sym (minimumIdempotent n)
|
||||
in lower lu
|
||||
|
||||
export %inline
|
||||
(.lower') : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
(.lower') = lower'
|
||||
|
||||
export
|
||||
upper : Num a => DecompLU {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
upper (MkLU lu) with (viewShape lu)
|
||||
|
@ -254,6 +263,15 @@ namespace DecompLU
|
|||
(.upper) : Num a => DecompLU {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
(.upper) = upper
|
||||
|
||||
export
|
||||
upper' : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
upper' lu = rewrite cong (\i => Matrix i n a) $ sym (minimumIdempotent n)
|
||||
in upper lu
|
||||
|
||||
export %inline
|
||||
(.upper') : Num a => {0 mat : Matrix' n a} -> DecompLU mat -> Matrix' n a
|
||||
(.upper') = upper'
|
||||
|
||||
|
||||
minWeakenLeft : {m,n : _} -> Fin (minimum m n) -> Fin m
|
||||
minWeakenLeft x = weakenLTE x $ minLTE m n
|
||||
|
@ -304,7 +322,7 @@ decompLU mat with (viewShape mat)
|
|||
|
||||
|
||||
-- LUP Decomposition
|
||||
public export
|
||||
export
|
||||
record DecompLUP {0 m,n,a : _} (mat : Matrix m n a) where
|
||||
constructor MkLUP
|
||||
lu : Matrix m n a
|
||||
|
@ -325,6 +343,15 @@ namespace DecompLUP
|
|||
(.lower) : Num a => DecompLUP {m,n,a} mat -> Matrix m (minimum m n) a
|
||||
(.lower) = lower
|
||||
|
||||
export
|
||||
lower' : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
lower' lu = rewrite cong (\i => Matrix n i a) $ sym (minimumIdempotent n)
|
||||
in lower lu
|
||||
|
||||
export %inline
|
||||
(.lower') : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
(.lower') = lower'
|
||||
|
||||
export
|
||||
upper : Num a => DecompLUP {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
upper (MkLUP lu _ _) with (viewShape lu)
|
||||
|
@ -335,6 +362,15 @@ namespace DecompLUP
|
|||
(.upper) : Num a => DecompLUP {m,n,a} mat -> Matrix (minimum m n) n a
|
||||
(.upper) = upper
|
||||
|
||||
export
|
||||
upper' : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
upper' lu = rewrite cong (\i => Matrix i n a) $ sym (minimumIdempotent n)
|
||||
in upper lu
|
||||
|
||||
export %inline
|
||||
(.upper') : Num a => {0 mat : Matrix' n a} -> DecompLUP mat -> Matrix' n a
|
||||
(.upper') = upper'
|
||||
|
||||
export
|
||||
permute : DecompLUP {m} mat -> Permutation m
|
||||
permute (MkLUP lu p sw) = p
|
||||
|
@ -384,8 +420,8 @@ decompLUP {m,n} mat with (viewShape mat)
|
|||
|
||||
|
||||
export
|
||||
detWithLUP : Scalar a => (mat : Matrix' n a) -> DecompLUP mat -> a
|
||||
detWithLUP mat lup =
|
||||
detWithLUP : Num a => (mat : Matrix' n a) -> DecompLUP mat -> a
|
||||
detWithLUP mat lup =
|
||||
(if numSwaps lup `mod` 2 == 0 then 1 else -1)
|
||||
* product (diagonal lup.lu)
|
||||
|
||||
|
@ -398,6 +434,50 @@ det {n} mat with (viewShape mat)
|
|||
_ | Shape [n,n] = detWithLUP mat (decompLUP mat)
|
||||
|
||||
|
||||
solveWithLUP : Scalar a => (mat : Matrix m n a) -> DecompLUP mat ->
|
||||
Vector m a -> Maybe (Vector n a)
|
||||
solveWithLUP mat lup b = ?h
|
||||
--------------------------------------------------------------------------------
|
||||
-- Solving matrix equations
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
|
||||
export
|
||||
solveLowerTri : Field a => Matrix' n a -> Vector n a -> Maybe (Vector n a)
|
||||
solveLowerTri mat b with (viewShape b)
|
||||
_ | Shape [n] =
|
||||
if all (/=0) (diagonal mat)
|
||||
then Just $ vector $ reverse $ construct $ reverse $ toVect b
|
||||
else Nothing
|
||||
where
|
||||
construct : {i : _} -> Vect i a -> Vect i a
|
||||
construct [] = []
|
||||
construct {i=S i} (b :: bs) =
|
||||
let xs = construct bs
|
||||
i' = assert_total $ case natToFin i n of Just i' => i'
|
||||
in (b - sum (zipWith (*) xs (reverse $ toVect $ believe_me $
|
||||
mat !!.. [One i', EndBound (weaken i')]))) / mat!#[i,i] :: xs
|
||||
|
||||
export
|
||||
solveUpperTri : Field a => Matrix' n a -> Vector n a -> Maybe (Vector n a)
|
||||
solveUpperTri mat b with (viewShape b)
|
||||
_ | Shape [n] =
|
||||
if all (/=0) (diagonal mat)
|
||||
then Just $ vector $ construct Z $ toVect b
|
||||
else Nothing
|
||||
where
|
||||
construct : Nat -> Vect i a -> Vect i a
|
||||
construct _ [] = []
|
||||
construct i (b :: bs) =
|
||||
let xs = construct (S i) bs
|
||||
i' = assert_total $ case natToFin i n of Just i' => i'
|
||||
in (b - sum (zipWith (*) xs (toVect $ believe_me $
|
||||
mat !!.. [One i', StartBound (FS i')]))) / mat!#[i,i] :: xs
|
||||
|
||||
export
|
||||
solveWithLUP : Field a => (mat : Matrix' n a) -> DecompLUP mat ->
|
||||
Vector n a -> Maybe (Vector n a)
|
||||
solveWithLUP mat lup b =
|
||||
let b' = permuteCoords (inverse lup.permute) b
|
||||
in solveLowerTri lup.lower' b' >>= solveUpperTri lup.upper'
|
||||
|
||||
export
|
||||
solve : Scalar a => Matrix' n a -> Vector n a -> Maybe (Vector n a)
|
||||
solve mat = solveWithLUP mat (decompLUP mat)
|
||||
|
|
Loading…
Reference in a new issue