Create Data.Permutation
This commit is contained in:
parent
92fc8f00c9
commit
0177781c74
|
@ -9,7 +9,7 @@ import Data.NP
|
|||
|
||||
|
||||
-- A Nat-based range function with better semantics
|
||||
public export
|
||||
export
|
||||
range : Nat -> Nat -> List Nat
|
||||
range x y = if x < y then assert_total $ takeBefore (>= y) (countFrom x S)
|
||||
else []
|
||||
|
|
64
src/Data/Permutation.idr
Normal file
64
src/Data/Permutation.idr
Normal file
|
@ -0,0 +1,64 @@
|
|||
module Data.Permutation
|
||||
|
||||
import Data.List
|
||||
import Data.Vect
|
||||
import Data.NumIdr.Multiply
|
||||
|
||||
|
||||
export
|
||||
record Permutation n where
|
||||
constructor MkPerm
|
||||
swaps : List (Fin n, Fin n)
|
||||
|
||||
|
||||
export
|
||||
swap : (i,j : Fin n) -> Permutation n
|
||||
swap x y = MkPerm [(x,y)]
|
||||
|
||||
export
|
||||
appendSwap : (i,j : Fin n) -> Permutation n -> Permutation n
|
||||
appendSwap i j (MkPerm a) = MkPerm ((i,j)::a)
|
||||
|
||||
export
|
||||
prependSwap : (i,j : Fin n) -> Permutation n -> Permutation n
|
||||
prependSwap i j (MkPerm a) = MkPerm (a `snoc` (i,j))
|
||||
|
||||
|
||||
mon : Monoid (a -> a)
|
||||
mon = MkMonoid @{MkSemigroup (.)} id
|
||||
|
||||
|
||||
export
|
||||
swapElems : (i,j : Fin n) -> Vect n a -> Vect n a
|
||||
swapElems i j v =
|
||||
if i == j then v
|
||||
else let x = index i v
|
||||
y = index j v
|
||||
in replaceAt j x $ replaceAt i y v
|
||||
|
||||
export
|
||||
permuteVect : Permutation n -> Vect n a -> Vect n a
|
||||
permuteVect p = foldMap @{%search} @{mon} (\(i,j) => swapElems i j) p.swaps
|
||||
|
||||
|
||||
export
|
||||
swapValues : (i,j : Fin n) -> Nat -> Nat
|
||||
swapValues i j x = if x == cast i then cast j
|
||||
else if x == cast j then cast i
|
||||
else x
|
||||
|
||||
export
|
||||
permuteValues : Permutation n -> Nat -> Nat
|
||||
permuteValues p = foldMap @{%search} @{mon} (\(i,j) => swapValues i j) p.swaps
|
||||
|
||||
export
|
||||
Mult (Permutation n) (Permutation n) (Permutation n) where
|
||||
MkPerm a *. MkPerm b = MkPerm (a ++ b)
|
||||
|
||||
export
|
||||
MultMonoid (Permutation n) where
|
||||
identity = MkPerm []
|
||||
|
||||
export
|
||||
MultGroup (Permutation n) where
|
||||
inverse (MkPerm a) = MkPerm (reverse a)
|
Loading…
Reference in a new issue