91 lines
2 KiB
Idris
91 lines
2 KiB
Idris
module Data.Ratio
|
|
|
|
infix 10 //
|
|
|
|
export
|
|
record Ratio a where
|
|
constructor MkRatio
|
|
nm, dn : a
|
|
|
|
public export
|
|
Rational : Type
|
|
Rational = Ratio Integer
|
|
|
|
|
|
gcd : (Eq a, Integral a) => a -> a -> a
|
|
gcd x y =
|
|
if x == 0 then y
|
|
else if y == 0 then x
|
|
else gcd y (x `mod` y)
|
|
|
|
export
|
|
reduce : (Eq a, Integral a) => Ratio a -> Ratio a
|
|
reduce (MkRatio n d) =
|
|
let g = gcd n d in MkRatio (n `div` g) (d `div` g)
|
|
|
|
|
|
export partial
|
|
(//) : (Eq a, Integral a) => a -> a -> Ratio a
|
|
n // d = case d /= 0 of
|
|
True => reduce $ MkRatio n d
|
|
|
|
|
|
namespace Ratio
|
|
export %inline
|
|
numer : Ratio a -> a
|
|
numer = nm
|
|
|
|
export %inline
|
|
(.numer) : Ratio a -> a
|
|
(.numer) = nm
|
|
|
|
export %inline
|
|
denom : Ratio a -> a
|
|
denom = dn
|
|
|
|
export %inline
|
|
(.denom) : Ratio a -> a
|
|
(.denom) = dn
|
|
|
|
|
|
export
|
|
Eq a => Eq (Ratio a) where
|
|
MkRatio n d == MkRatio m b = n == m && d == b
|
|
|
|
export
|
|
(Ord a, Num a) => Ord (Ratio a) where
|
|
compare (MkRatio n d) (MkRatio m b) =
|
|
flipIfNeg (b*d) $ compare (n*b) (m*d)
|
|
where
|
|
flipIfNeg : a -> Ordering -> Ordering
|
|
flipIfNeg x EQ = EQ
|
|
flipIfNeg x LT = if x >= 0 then LT else GT
|
|
flipIfNeg x GT = if x >= 0 then GT else LT
|
|
|
|
export
|
|
Show a => Show (Ratio a) where
|
|
showPrec p (MkRatio n d) =
|
|
let p' = User 10
|
|
in showParens (p >= p') (showPrec p' n ++ " // " ++ showPrec p' d)
|
|
|
|
export
|
|
(Eq a, Integral a) => Num (Ratio a) where
|
|
MkRatio n d + MkRatio m b = reduce $ MkRatio (n*b + m*d) (d*b)
|
|
MkRatio n d * MkRatio m b = reduce $ MkRatio (n*m) (d*b)
|
|
fromInteger x = MkRatio (fromInteger x) 1
|
|
|
|
export
|
|
(Eq a, Integral a, Neg a) => Neg (Ratio a) where
|
|
negate (MkRatio n d) = MkRatio (-n) d
|
|
MkRatio n d - MkRatio m b = reduce $ MkRatio (n*b - m*d) (d*b)
|
|
|
|
export
|
|
(Eq a, Integral a, Abs a) => Abs (Ratio a) where
|
|
abs (MkRatio n d) = MkRatio (abs n) (abs d)
|
|
|
|
export
|
|
(Eq a, Integral a) => Fractional (Ratio a) where
|
|
recip (MkRatio n d) = case n /= 0 of True => MkRatio d n
|
|
MkRatio n d / MkRatio m b = case m /= 0 of
|
|
True => reduce $ MkRatio (n*b) (m*d)
|