Compare commits
10 commits
2e6f56dfde
...
1bdfde80d7
Author | SHA1 | Date | |
---|---|---|---|
Kiana Sheibani | 1bdfde80d7 | ||
Kiana Sheibani | d19ae136f7 | ||
Kiana Sheibani | 52eb83594b | ||
Kiana Sheibani | e21b81b965 | ||
Kiana Sheibani | 80e43be8fc | ||
Kiana Sheibani | 0dbd3e6bc8 | ||
Kiana Sheibani | 42d216fb98 | ||
Kiana Sheibani | 5a6b7cad3f | ||
Kiana Sheibani | c1bfc2f042 | ||
Kiana Sheibani | fdbc5b9d69 |
2
LICENSE
2
LICENSE
|
@ -1,6 +1,6 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2022 Kiana Sheibani
|
||||
Copyright (c) 2024 Kiana Sheibani
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
package ratio
|
||||
brief = "Arbitrary-precision ratio types"
|
||||
version = 1.0.0
|
||||
|
||||
authors = "Kiana Sheibani"
|
||||
|
@ -7,4 +8,5 @@ license = "MIT"
|
|||
sourcedir = "src"
|
||||
readme = "README.md"
|
||||
|
||||
modules = Data.Ratio
|
||||
modules = Data.Ratio,
|
||||
Data.IntegralGCD
|
||||
|
|
|
@ -18,7 +18,7 @@ interface (Eq a, Integral a) => IntegralGCD a where
|
|||
gcd x y =
|
||||
if x == 0 then y
|
||||
else if y == 0 then x
|
||||
else assert_total $ gcd y (x `mod` y)
|
||||
else gcd y (assert_smaller y $ x `mod` y)
|
||||
|
||||
|
||||
export IntegralGCD Integer where
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
module Data.Ratio
|
||||
|
||||
import Data.Bool.Xor
|
||||
import Data.Maybe
|
||||
import Data.So
|
||||
import Data.IntegralGCD
|
||||
|
@ -25,35 +26,6 @@ Rational : Type
|
|||
Rational = Ratio Integer
|
||||
|
||||
|
||||
||| Reduce a ratio by dividing both components by their common factor. Most
|
||||
||| operations automatically reduce the returned ratio, so explicitly calling
|
||||
||| this function is usually unnecessary.
|
||||
export
|
||||
reduce : IntegralGCD a => Ratio a -> Ratio a
|
||||
reduce (MkRatio n d) =
|
||||
let g = gcd n d in MkRatio (n `div` g) (d `div` g)
|
||||
|
||||
|
||||
||| Construct a ratio of two values, returning `Nothing` if the denominator is
|
||||
||| zero.
|
||||
export
|
||||
mkRatioMaybe : IntegralGCD a => (n, d : a) -> Maybe (Ratio a)
|
||||
mkRatioMaybe n d = toMaybe (d /= 0) (reduce $ MkRatio n d)
|
||||
|
||||
infix 9 //
|
||||
|
||||
||| Construct a ratio of two values.
|
||||
export
|
||||
(//) : IntegralGCD a => (n, d : a) -> {auto 0 ok : So (d /= 0)} -> Ratio a
|
||||
(//) n d = reduce $ MkRatio n d
|
||||
|
||||
|
||||
||| Round a ratio down to a positive integer.
|
||||
export
|
||||
floor : Integral a => Ratio a -> a
|
||||
floor (MkRatio n d) = n `div` d
|
||||
|
||||
|
||||
namespace Ratio
|
||||
||| Return the numerator of the ratio in reduced form.
|
||||
export %inline
|
||||
|
@ -78,6 +50,46 @@ namespace Ratio
|
|||
(.denom) = dn
|
||||
|
||||
|
||||
||| Reduce a ratio by dividing both components by their common factor. Most
|
||||
||| operations automatically reduce the returned ratio, so explicitly calling
|
||||
||| this function is usually unnecessary.
|
||||
export
|
||||
reduce : IntegralGCD a => Ratio a -> Ratio a
|
||||
reduce (MkRatio n d) =
|
||||
let g = gcd n d in MkRatio (n `div` g) (d `div` g)
|
||||
|
||||
||| Construct a ratio of two values, returning `Nothing` if the denominator is
|
||||
||| zero.
|
||||
export
|
||||
mkRatioMaybe : IntegralGCD a => (n, d : a) -> Maybe (Ratio a)
|
||||
mkRatioMaybe n d = toMaybe (d /= 0) (reduce $ MkRatio n d)
|
||||
|
||||
||| Create a ratio of two values.
|
||||
export partial
|
||||
mkRatio : IntegralGCD a => (n, d : a) -> Ratio a
|
||||
mkRatio n d = case d /= 0 of
|
||||
True => reduce $ MkRatio n d
|
||||
|
||||
||| Create a ratio of two values, unsafely assuming that they are coprime and
|
||||
||| the denominator is non-zero.
|
||||
||| WARNING: This function will behave erratically and may crash your program
|
||||
||| if these conditions are not met!
|
||||
export %unsafe
|
||||
unsafeMkRatio : (n, d : a) -> Ratio a
|
||||
unsafeMkRatio = MkRatio
|
||||
|
||||
infix 9 //
|
||||
|
||||
||| Construct a ratio of two values.
|
||||
export
|
||||
(//) : IntegralGCD a => (n, d : a) -> {auto 0 ok : So (d /= 0)} -> Ratio a
|
||||
(//) n d = reduce $ MkRatio n d
|
||||
|
||||
|
||||
||| Round a ratio down to the nearest integer less than it.
|
||||
export
|
||||
floor : Integral a => Ratio a -> a
|
||||
floor (MkRatio n d) = n `div` d
|
||||
|
||||
|
||||
export
|
||||
|
@ -87,12 +99,12 @@ Eq a => Eq (Ratio a) where
|
|||
export
|
||||
(Ord a, Num a) => Ord (Ratio a) where
|
||||
compare (MkRatio n d) (MkRatio m b) =
|
||||
flipIfNeg (b*d) $ compare (n*b) (m*d)
|
||||
flipIf (b >= 0 `xor` d >= 0) $ compare (n*b) (m*d)
|
||||
where
|
||||
flipIfNeg : a -> Ordering -> Ordering
|
||||
flipIfNeg x EQ = EQ
|
||||
flipIfNeg x LT = if x >= 0 then LT else GT
|
||||
flipIfNeg x GT = if x >= 0 then GT else LT
|
||||
flipIf : Bool -> Ordering -> Ordering
|
||||
flipIf _ EQ = EQ
|
||||
flipIf b LT = if b then GT else LT
|
||||
flipIf b GT = if b then LT else GT
|
||||
|
||||
export
|
||||
Show a => Show (Ratio a) where
|
||||
|
@ -120,3 +132,18 @@ IntegralGCD a => Fractional (Ratio a) where
|
|||
recip (MkRatio n d) = case n /= 0 of True => MkRatio d n
|
||||
MkRatio n d / MkRatio m b = case m /= 0 of
|
||||
True => reduce $ MkRatio (n*b) (m*d)
|
||||
|
||||
-- ## Casting
|
||||
|
||||
export
|
||||
Num a => Cast a (Ratio a) where
|
||||
cast x = MkRatio x 1
|
||||
|
||||
export
|
||||
Cast a b => Cast (Ratio a) (Ratio b) where
|
||||
cast (MkRatio n d) = MkRatio (cast n) (cast d)
|
||||
|
||||
-- Special case: `Cast Rational Double`
|
||||
export
|
||||
(Cast a b, Fractional b) => Cast (Ratio a) b where
|
||||
cast (MkRatio n d) = cast n / cast d
|
||||
|
|
Loading…
Reference in a new issue