idris2-profunctors/Data/Profunctor/Closed.idr

170 lines
4.6 KiB
Idris

module Data.Profunctor.Closed
import Data.Morphisms
import Data.Profunctor.Types
import Data.Profunctor.Functor
import Data.Profunctor.Strong
%default total
------------------------------------------------------------------------------
-- Closed interface
------------------------------------------------------------------------------
||| Closed profunctors preserve the closed structure of a category.
|||
||| Laws:
||| * `lmap (. f) . closed = rmap (. f) . closed`
||| * `closed . closed = dimap uncurry curry . closed`
||| * `dimap const ($ ()) . closed = id`
public export
interface Profunctor p => Closed p where
||| The action of a closed profunctor.
closed : p a b -> p (x -> a) (x -> b)
------------------------------------------------------------------------------
-- Implementations
------------------------------------------------------------------------------
public export
Closed Morphism where
closed (Mor f) = Mor (f .)
||| A named implementation of `Closed` for function types.
||| Use this to avoid having to use a type wrapper like `Morphism`.
public export
[Function] Closed (\a,b => a -> b) using Profunctor.Function where
closed = (.)
public export
Functor f => Closed (Costar f) where
closed (MkCostar p) = MkCostar $ \f,x => p (map ($ x) f)
public export
curry' : Closed p => p (a, b) c -> p a (b -> c)
curry' = lmap (,) . closed
------------------------------------------------------------------------------
-- Closure
------------------------------------------------------------------------------
-- Helper functions for working with function types
hither : (s -> (a, b)) -> (s -> a, s -> b)
hither h = (fst . h, snd . h)
yon : (s -> a, s -> b) -> s -> (a,b)
yon h s = (fst h s, snd h s)
||| The comonad generated by the reflective subcategory of profunctors that
||| implement `Closed`.
public export
record Closure p a b where
constructor MkClosure
runClosure : forall x. p (x -> a) (x -> b)
public export
Profunctor p => Profunctor (Closure p) where
dimap f g (MkClosure p) = MkClosure $ dimap (f .) (g .) p
lmap f (MkClosure p) = MkClosure $ lmap (f .) p
rmap f (MkClosure p) = MkClosure $ rmap (f .) p
public export
ProfunctorFunctor Closure where
promap f (MkClosure p) = MkClosure (f p)
public export
ProfunctorComonad Closure where
proextract (MkClosure p) = dimap const ($ ()) p
produplicate (MkClosure p) = MkClosure $ MkClosure $ dimap uncurry curry p
public export
Strong p => GenStrong Pair (Closure p) where
strongl (MkClosure p) = MkClosure $ dimap hither yon $ first p
strongr (MkClosure p) = MkClosure $ dimap hither yon $ second p
public export
Profunctor p => Closed (Closure p) where
closed p = runClosure $ produplicate p
public export
Profunctor p => Functor (Closure p a) where
map = rmap
public export
close : Closed p => p :-> q -> p :-> Closure q
close f p = MkClosure $ f $ closed p
public export
unclose : Profunctor q => p :-> Closure q -> p :-> q
unclose f p = dimap const ($ ()) $ runClosure $ f p
------------------------------------------------------------------------------
-- Environment
------------------------------------------------------------------------------
||| The monad generated by the reflective subcategory of profunctors that
||| implement `Closed`.
public export
data Environment : (p : Type -> Type -> Type) -> Type -> Type -> Type where
MkEnv : ((z -> y) -> b) -> p x y -> (a -> z -> x) -> Environment p a b
public export
Profunctor (Environment p) where
dimap f g (MkEnv l m r) = MkEnv (g . l) m (r . f)
lmap f (MkEnv l m r) = MkEnv l m (r . f)
rmap g (MkEnv l m r) = MkEnv (g . l) m r
public export
ProfunctorFunctor Environment where
promap f (MkEnv l m r) = MkEnv l (f m) r
public export
ProfunctorMonad Environment where
propure p = MkEnv ($ ()) p const
projoin (MkEnv {x=x',y=y',z=z'} l' (MkEnv {x,y,z} l m r) r') = MkEnv (ll . curry) m rr
where
ll : (z' -> z -> y) -> b
ll zr = l' (l . zr)
rr : a -> (z', z) -> x
rr a (b, c) = r (r' a b) c
public export
ProfunctorAdjunction Environment Closure where
prounit p = MkClosure (MkEnv id p id)
procounit (MkEnv l (MkClosure x) r) = dimap r l x
public export
Closed (Environment p) where
closed {x=x'} (MkEnv {x,y,z} l m r) = MkEnv l' m r'
where
l' : ((z, x') -> y) -> x' -> b
l' f x = l (\z => f (z,x))
r' : (x' -> a) -> (z, x') -> x
r' f (z,x) = r (f x) z
public export
Profunctor p => Functor (Environment p a) where
map = rmap
public export
environment : Closed q => p :-> q -> Environment p :-> q
environment f (MkEnv l m r) = dimap r l $ closed (f m)
public export
unenvironment : Environment p :-> q -> p :-> q
unenvironment f p = f (MkEnv ($ ()) p const)