Use existing equivalence type in Prelude
This commit is contained in:
parent
ebc5de6b2c
commit
f68a0c517c
|
@ -100,14 +100,14 @@ ProfunctorFunctor (GenTambara ten) where
|
|||
|
||||
export
|
||||
Tensor ten i => ProfunctorComonad (GenTambara ten) where
|
||||
proextract (MkTambara p) = dimap unitr.bwd unitr.fwd p
|
||||
produplicate (MkTambara p) = MkTambara $ MkTambara $ dimap assoc.bwd assoc.fwd p
|
||||
proextract (MkTambara p) = dimap unitr.rightToLeft unitr.leftToRight p
|
||||
produplicate (MkTambara p) = MkTambara $ MkTambara $ dimap assoc.rightToLeft assoc.leftToRight p
|
||||
|
||||
export
|
||||
Associative ten => Symmetric ten => Profunctor p => GenStrong ten (GenTambara ten p) where
|
||||
strongl (MkTambara p) = MkTambara $ dimap assoc.bwd assoc.fwd p
|
||||
strongr (MkTambara p) = MkTambara $ dimap (assoc.bwd . mapFst swap)
|
||||
(mapFst swap . assoc.fwd) p
|
||||
strongl (MkTambara p) = MkTambara $ dimap assoc.rightToLeft assoc.leftToRight p
|
||||
strongr (MkTambara p) = MkTambara $ dimap (assoc.rightToLeft . mapFst swap)
|
||||
(mapFst swap . assoc.leftToRight) p
|
||||
|
||||
export
|
||||
Bifunctor ten => Profunctor p => Functor (GenTambara ten p a) where
|
||||
|
@ -120,7 +120,7 @@ gentambara @{gs} f x = MkTambara $ f $ strongl @{gs} x
|
|||
|
||||
export
|
||||
ungentambara : Tensor ten i => Profunctor q => p :-> GenTambara ten q -> p :-> q
|
||||
ungentambara f x = dimap unitr.bwd unitr.fwd $ runTambara $ f x
|
||||
ungentambara f x = dimap unitr.rightToLeft unitr.leftToRight $ runTambara $ f x
|
||||
|
||||
|
||||
public export
|
||||
|
@ -168,14 +168,14 @@ ProfunctorFunctor (GenPastro ten) where
|
|||
|
||||
export
|
||||
(Tensor ten i, Symmetric ten) => ProfunctorMonad (GenPastro ten) where
|
||||
propure x = MkPastro unitr.fwd x unitr.bwd
|
||||
propure x = MkPastro unitr.leftToRight x unitr.rightToLeft
|
||||
projoin (MkPastro {x=x',y=y',z=z'} l' (MkPastro {x,y,z} l m r) r') = MkPastro ll m rr
|
||||
where
|
||||
ll : y `ten` (z' `ten` z) -> b
|
||||
ll = l' . mapFst l . assoc.fwd . mapSnd swap
|
||||
ll = l' . mapFst l . assoc.leftToRight . mapSnd swap
|
||||
|
||||
rr : a -> x `ten` (z' `ten` z)
|
||||
rr = mapSnd swap . assoc.bwd . mapFst r . r'
|
||||
rr = mapSnd swap . assoc.rightToLeft . mapFst r . r'
|
||||
|
||||
export
|
||||
ProfunctorAdjunction (GenPastro ten) (GenTambara ten) where
|
||||
|
@ -187,15 +187,15 @@ export
|
|||
strongl (MkPastro {x,y,z} l m r) = MkPastro l' m r'
|
||||
where
|
||||
l' : y `ten` (z `ten` c) -> b `ten` c
|
||||
l' = mapFst l . assoc.fwd
|
||||
l' = mapFst l . assoc.leftToRight
|
||||
r' : a `ten` c -> x `ten` (z `ten` c)
|
||||
r' = assoc.bwd . mapFst r
|
||||
r' = assoc.rightToLeft . mapFst r
|
||||
strongr (MkPastro {x,y,z} l m r) = MkPastro l' m r'
|
||||
where
|
||||
l' : y `ten` (c `ten` z) -> c `ten` b
|
||||
l' = swap . mapFst l . assoc.fwd . mapSnd swap
|
||||
l' = swap . mapFst l . assoc.leftToRight . mapSnd swap
|
||||
r' : c `ten` a -> x `ten` (c `ten` z)
|
||||
r' = mapSnd swap . assoc.bwd . mapFst r . swap
|
||||
r' = mapSnd swap . assoc.rightToLeft . mapFst r . swap
|
||||
|
||||
|
||||
export
|
||||
|
@ -204,7 +204,7 @@ genpastro @{gs} f (MkPastro l m r) = dimap r l (strongl @{gs} (f m))
|
|||
|
||||
export
|
||||
ungenpastro : Tensor ten i => GenPastro ten p :-> q -> p :-> q
|
||||
ungenpastro f x = f (MkPastro unitr.fwd x unitr.bwd)
|
||||
ungenpastro f x = f (MkPastro unitr.leftToRight x unitr.rightToLeft)
|
||||
|
||||
|
||||
public export
|
||||
|
|
|
@ -3,31 +3,29 @@ module Data.Tensor
|
|||
%default total
|
||||
|
||||
|
||||
public export
|
||||
record Isomorphism a b where
|
||||
constructor MkIso
|
||||
fwd : a -> b
|
||||
bwd : b -> a
|
||||
|
||||
|
||||
public export
|
||||
interface Bifunctor ten => Associative ten where
|
||||
assoc : Isomorphism (a `ten` (b `ten` c)) ((a `ten` b) `ten` c)
|
||||
assoc : a `ten` (b `ten` c) <=> (a `ten` b) `ten` c
|
||||
|
||||
public export
|
||||
interface Bifunctor ten => Symmetric ten where
|
||||
swap : a `ten` b -> b `ten` a
|
||||
swap = symmetric.leftToRight
|
||||
|
||||
symmetric : a `ten` b <=> b `ten` a
|
||||
symmetric = MkEquivalence swap swap
|
||||
|
||||
|
||||
|
||||
public export
|
||||
interface Associative ten => Tensor ten i | ten where
|
||||
unitl : Isomorphism (i `ten` a) a
|
||||
unitr : Isomorphism (a `ten` i) a
|
||||
unitl : i `ten` a <=> a
|
||||
unitr : a `ten` i <=> a
|
||||
|
||||
|
||||
export
|
||||
Associative Pair where
|
||||
assoc = MkIso (\(x,(y,z)) => ((x,y),z)) (\((x,y),z) => (x,(y,z)))
|
||||
assoc = MkEquivalence (\(x,(y,z)) => ((x,y),z)) (\((x,y),z) => (x,(y,z)))
|
||||
|
||||
export
|
||||
Symmetric Pair where
|
||||
|
@ -35,13 +33,13 @@ Symmetric Pair where
|
|||
|
||||
export
|
||||
Tensor Pair () where
|
||||
unitl = MkIso snd ((),)
|
||||
unitr = MkIso fst (,())
|
||||
unitl = MkEquivalence snd ((),)
|
||||
unitr = MkEquivalence fst (,())
|
||||
|
||||
|
||||
export
|
||||
Associative Either where
|
||||
assoc = MkIso f b
|
||||
assoc = MkEquivalence f b
|
||||
where
|
||||
f : forall a,b,c. Either a (Either b c) -> Either (Either a b) c
|
||||
f (Left x) = Left (Left x)
|
||||
|
@ -59,5 +57,5 @@ Symmetric Either where
|
|||
|
||||
export
|
||||
Tensor Either Void where
|
||||
unitl = MkIso (either absurd id) Right
|
||||
unitr = MkIso (either id absurd) Left
|
||||
unitl = MkEquivalence (either absurd id) Right
|
||||
unitr = MkEquivalence (either id absurd) Left
|
||||
|
|
Loading…
Reference in a new issue