Create Data.Profunctor.Representable
This commit is contained in:
parent
3d350068c5
commit
c0de1a7a94
|
@ -9,6 +9,8 @@ import Data.Profunctor.Sieve
|
||||||
%default total
|
%default total
|
||||||
|
|
||||||
|
|
||||||
|
-- NOTE: This may be better as a type synonym instead of a new type?
|
||||||
|
|
||||||
public export
|
public export
|
||||||
record Cayley {0 k1,k2,k3 : Type} f (p : k1 -> k2 -> k3) a b where
|
record Cayley {0 k1,k2,k3 : Type} f (p : k1 -> k2 -> k3) a b where
|
||||||
constructor MkCayley
|
constructor MkCayley
|
||||||
|
|
49
Data/Profunctor/Representable.idr
Normal file
49
Data/Profunctor/Representable.idr
Normal file
|
@ -0,0 +1,49 @@
|
||||||
|
module Data.Profunctor.Representable
|
||||||
|
|
||||||
|
import Control.Monad.Identity
|
||||||
|
import Data.Morphisms
|
||||||
|
import Data.Profunctor
|
||||||
|
import Data.Profunctor.Costrong
|
||||||
|
import Data.Profunctor.Sieve
|
||||||
|
|
||||||
|
%default total
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
interface (Sieve p f, Strong p) => Representable p f | p where
|
||||||
|
tabulate : (a -> f b) -> p a b
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
Representable Morphism Identity where
|
||||||
|
tabulate f = Mor (runIdentity . f)
|
||||||
|
|
||||||
|
export
|
||||||
|
[Function] Representable (\a,b => a -> b) Identity
|
||||||
|
using Sieve.Function Strong.Function where
|
||||||
|
tabulate = (runIdentity .)
|
||||||
|
|
||||||
|
export
|
||||||
|
Functor f => Representable (Kleislimorphism f) f where
|
||||||
|
tabulate = Kleisli
|
||||||
|
|
||||||
|
export
|
||||||
|
Functor f => Representable (Star f) f where
|
||||||
|
tabulate = MkStar
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
tabulated : (Representable q f, Representable r g) => forall p. Profunctor p =>
|
||||||
|
p (q a b) (r a' b') -> p (a -> f b) (a' -> g b')
|
||||||
|
tabulated = dimap tabulate sieve
|
||||||
|
|
||||||
|
|
||||||
|
public export
|
||||||
|
interface (Cosieve p f, Costrong p) => Corepresentable p f | p where
|
||||||
|
cotabulate : (f a -> b) -> p a b
|
||||||
|
|
||||||
|
|
||||||
|
export
|
||||||
|
cotabulated : (Corepresentable q f, Corepresentable r g) => forall p. Profunctor p =>
|
||||||
|
p (q a b) (r a' b') -> p (f a -> b) (g a' -> b')
|
||||||
|
cotabulated = dimap cotabulate cosieve
|
Loading…
Reference in a new issue