61 lines
1.7 KiB
Idris
61 lines
1.7 KiB
Idris
|
module Data.Profunctor.Cayley
|
||
|
|
||
|
import Data.Profunctor
|
||
|
import Data.Profunctor.Costrong
|
||
|
import Data.Profunctor.Traversing
|
||
|
import Data.Profunctor.Mapping
|
||
|
import Data.Profunctor.Sieve
|
||
|
|
||
|
%default total
|
||
|
|
||
|
|
||
|
public export
|
||
|
record Cayley {0 k1,k2,k3 : Type} f (p : k1 -> k2 -> k3) a b where
|
||
|
constructor MkCayley
|
||
|
runCayley : f (p a b)
|
||
|
|
||
|
|
||
|
export
|
||
|
Functor f => Profunctor p => Profunctor (Cayley f p) where
|
||
|
dimap f g (MkCayley p) = MkCayley (dimap f g <$> p)
|
||
|
lmap f (MkCayley p) = MkCayley (lmap f <$> p)
|
||
|
rmap g (MkCayley p) = MkCayley (rmap g <$> p)
|
||
|
|
||
|
export
|
||
|
Functor f => ProfunctorFunctor (Cayley f) where
|
||
|
promap f (MkCayley p) = MkCayley (map f p)
|
||
|
|
||
|
export
|
||
|
Monad m => ProfunctorMonad (Cayley m) where
|
||
|
propure = MkCayley . pure
|
||
|
projoin (MkCayley p) = MkCayley $ p >>= runCayley
|
||
|
|
||
|
export
|
||
|
Functor f => GenStrong ten p => GenStrong ten (Cayley f p) where
|
||
|
strongl (MkCayley p) = MkCayley (strongl {ten} <$> p)
|
||
|
strongr (MkCayley p) = MkCayley (strongr {ten} <$> p)
|
||
|
|
||
|
export
|
||
|
Functor f => GenCostrong ten p => GenCostrong ten (Cayley f p) where
|
||
|
costrongl (MkCayley p) = MkCayley (costrongl {ten} <$> p)
|
||
|
costrongr (MkCayley p) = MkCayley (costrongr {ten} <$> p)
|
||
|
|
||
|
export
|
||
|
Functor f => Closed p => Closed (Cayley f p) where
|
||
|
closed (MkCayley p) = MkCayley (closed <$> p)
|
||
|
|
||
|
export
|
||
|
Functor f => Traversing p => Traversing (Cayley f p) where
|
||
|
traverse' (MkCayley p) = MkCayley (traverse' <$> p)
|
||
|
wander f (MkCayley p) = MkCayley (wander f <$> p)
|
||
|
|
||
|
export
|
||
|
Functor f => Mapping p => Mapping (Cayley f p) where
|
||
|
map' (MkCayley p) = MkCayley (map' <$> p)
|
||
|
roam f (MkCayley p) = MkCayley (roam f <$> p)
|
||
|
|
||
|
|
||
|
export
|
||
|
mapCayley : (forall x. f x -> g x) -> Cayley f p a b -> Cayley g p a b
|
||
|
mapCayley f (MkCayley p) = MkCayley (f p)
|